期刊文献+

基于高斯混合模型的乐器识别方法 被引量:3

A Novel Method for Instrument Recognition Based on Gauss Mixture Model
下载PDF
导出
摘要 传统的乐器识别方法采用的是树型分类方法,这种方法分类过程比较繁琐,而且精度不高。该文把话者识别的方法应用到乐器识别之中,采用模式识别的方法实现对乐器的识别。采用MFCC系数和它的一阶导数作为音品的声学特征,分别对6种管弦乐器建立高斯混合模型。在识别过程中,首先假设各乐器的先验概率相同,根据高斯混合模型得出的后验概率确定待识别乐器所属的种类。实验表明这种识别方法十分有效,取得了较高的识别精度。 The traditional instrument recognition method adopts binary-tree classifying method. The process of this method is trivial and inaccurate. This paper applies speaker recognition methods into instrument recognition. The pattern recognition is utilized to implement instrument recognition. The MFCC coefficient and its derivative are taking as the acoustic features. A GMM model is constructed for each instrument set. In the process of recognition, the prior probability is supposed to be the same, the posterior probability is calculated according to GMM, and then the instrument class is determined. The experiment shows that this method is quite efficient and has better precision.
作者 张奇 苏鸿根
出处 《计算机工程》 CAS CSCD 北大核心 2004年第18期133-134,173,共3页 Computer Engineering
关键词 高斯混合模型 乐器识别 话者识别 Gauss mixture model Instrument recognition Speaker recognition
  • 相关文献

参考文献5

  • 1Do M N.Digital Signal Processing Mini-project.http://lcavwww.epfl.ch/-minhdo/asr_proj ect/asr_project.html 被引量:1
  • 2Herrera P,Amatriain X,Batlle E,et al.Towards Instrument Segmentation for Music Content Description:a Critical Review of Instrument Classification Techniques.In Proc.of International Symposium on Music Information Retrieval,2000 被引量:1
  • 3Martin K D,Kim Y E.Musical Instrument Identification:A Patternrecognition Approach.136th Meeting of the Acoustical Society of America,1998- 10-13 被引量:1
  • 4马继勇.[D].哈尔滨工业大学,1998. 被引量:1
  • 5易克初等编著..语音信号处理[M].北京:国防工业出版社,2000:363.

同被引文献24

  • 1张奇,苏鸿根.基于支持向量机的乐器识别方法[J].计算机工程与应用,2004,40(18):99-101. 被引量:7
  • 2Mueller M,Ellis D,Klapuri A.Signal Processing for MusicAnalysis.IEEE Journal of Selected Topics in SignalProcessing,2011,1(99):1-24. 被引量:1
  • 3Eggink J,Brown G J.A missing feature approach toinstrument identification in polyphonic music.2003 IEEEInternational Conference on Acoustics,Speech and SignalProcessing.Sheffield,2003:553-556. 被引量:1
  • 4Jie X,Jian W,Yan YC.SOM-based classification method formoving object in traffic video.2010 Third InternationalSymposium on Intelligent Information Technology andSecurity Informatics.Suzhou.2010:138-142. 被引量:1
  • 5Roisim L,Jacqueline W,Michael ON.An Exploration ofGenetic Algorithms for Efficient Musical InstrumentIdentification.Signals and Systems Conference.Ireland,2010:1-6. 被引量:1
  • 6Yan T,Xu JT,Jiang WG.A Load Distribution Optimizationamong Turbine-generators based on PSO-GA.2011International Conference on Intelligent ComputationTechnology and Automation.Nanchang,2011:15-18. 被引量:1
  • 7Shuai J,Yi L,Guang ML.SOM-based hand gesturerecognition for virtual interactions.2011 IEEE InternationalSymposium on VR Innovation.2011:317-322. 被引量:1
  • 8KOS M, GRASIC M, VLAJ D, et al. On-line speech/music seg- mentation for broadcast news domain [ C]// IWSSIP'09: Proceed- ings of the 16th International Conference on Systems, Signals and Image Processing. Piscataway: IEEE, 2009:1 -4. 被引量:1
  • 9LI Y, WANG D L. Separation of singing voice from music accompa- niment for monaural recordings [ J]. IEEE Transactions on Audio, Speech and Language Processing, 2007, 15(4) : 1475 - 1487. 被引量:1
  • 10MADDAGE N C, XU C, WANG Y. A SVM-based classification ap- proach to musical audio [ C]//ISMIR'03: Proceedings of the 4th In- ternational Conference on Music Information Retrieval. Baltimore: ISSMIR, 2003:25-26. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部