期刊文献+

一种用于位置数据库结构调整的增量聚类算法 被引量:5

An Incremental Clustering Algorithm for the Topology Adjustment of Location Databases
下载PDF
导出
摘要 在移动通信网络环境中,如何合理地组织和存储移动对象的配置信息,从而有效地降低查询和更新代价是位置管理中的一个重要问题.将数据挖掘应用到移动计算环境中是一项具有挑战性的研究课题,具有广阔的应用前景.区域划分能够优化位置数据库的拓扑结构,有效地降低查询和更新代价.但是随着时间的迁移,用户的移动模式会发生改变,导致原有区域的划分与当前的移动模式不符,因此产生了动态区域划分这一亟待解决的重要问题.聚类可以很好地解决区域划分问题,而对于动态区域划分问题,如果仍然采用聚类来解决,就等于重新划分,没有充分利用原有划分的信息,所需代价很大.提出了一种增量的聚类算法来解决动态区域划分问题.该方法以较小的代价调整原有划分,使得新得到的划分仍然满足区域划分所需满足的条件. How to effectively organize and store the profile of moving objects in a mobile environment, where then can effectively lower the paging and update cost, is an important problem in location management. Combining data mining into the mobile environment is a challenging research task, which has broad applications. Zone partition can effectively optimize the topology of location databases and efficiently reduce the cost of location paging and location update. But with the evolving time, the mobile users’ moving patterns may change, so the original partitions may not match the current moving patterns. Thus one of the important problems, which need to be solved, is how to partition the zones dynamically. Clustering method can solve the static zone partition well, but face with the dynamic zone partition problem. If the clustering method is still used to solve this problem, it means that the zones are partitioned again from scratch, which doesn’t utilize the original partitions and need great cost. In this paper an incremental clustering method is provided to solve the dynamic zone partition problem, which adjusts the original zone partitions with less cost and guarantees all the conditions needed for zone partition problem in the meanwhile.
出处 《软件学报》 EI CSCD 北大核心 2004年第9期1351-1360,共10页 Journal of Software
基金 国家高技术研究发展计划(863) 国家重点基础研究发展规划(973) 北京大学-IBM创新研究院项目资助~~
关键词 增量聚类 数据挖掘 位置数据库 位置管理:移动通信 incremental clustering data mining location database location management mobile communication
  • 相关文献

参考文献19

  • 1[1]Wong VWS, Leung CM. Location management for next generation personal communication networks. IEEE Network, 2000,14(5):18~24. 被引量:1
  • 2[2]Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 335~393. 被引量:1
  • 3[3]Ng R, Han J. Efficient and effective clustering method for spatial data mining. In: Bocca JB, Jarke M, Zaniolo C, eds. Proc. of the 20th Int'l Conf. on Very Large Data Bases. San Fransisco: Morgan Kaufmann Publisheers, 1994. 144~155. 被引量:1
  • 4[4]Guha S, Rastogi R, Shim K. CURE: An efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998.73~84. 被引量:1
  • 5[5]Guha S, Rastogi R, Shim K, ROCK: A robust clustering algorithm for categorical attributes. In: Proc. of the 15th Int'l Conf. on Data Engineering. IEEE Computer Society, 1999. 512~521. 被引量:1
  • 6[6]Karypis G, Han E-H, Kumar V. Chameleon: Hierarchical clustering using dynamic modeling. IEEE Computer, 1999,32(8):68~75. 被引量:1
  • 7[7]Estivill-Castro V, Lee I. AMOEBA: Hierarchical clustering based on spatial proximity using delaunay diagram. In: Forer P, Yeh AGO, He J, eds. Proc. of the 9th Int'l Symposium on Spatial Data Handling. Hong Kong: Study Group on Geographical Information Science of the International Geographical Union, 2000. 7a.26~7a.41. 被引量:1
  • 8[8]Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proc. of the 2nd Int'l Conf. on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996. 226~231. 被引量:1
  • 9[9]Ma S, Wang TJ, Tang SW, Yang DQ, Gao J. A new fast clustering algorithm based on reference and density. In: Dong GZ, Tang CJ,Wang W, eds. Proc. of the WAIM Conf. Heidelberg: Springer-Verlag, 2003.214~225. 被引量:1
  • 10[10]Wang W, Yang J, Muntz R. STING+: An approach to active spatial data mining. In: Proc. of the 15th Int'l Conf. on Data Engineering. IEEE Computer Society, 1999. 119~125. 被引量:1

同被引文献69

  • 1黄永平,邹力鹍.数据仓库中基于密度的批量增量聚类算法[J].计算机工程与应用,2004,40(29):206-208. 被引量:9
  • 2高小梅,冯云,冯兴杰.增量式K-Medoids聚类算法[J].计算机工程,2005,31(B07):181-183. 被引量:9
  • 3[5]Ganti V,Gehrke J,Ramakrishnan R.DEMON:Mining and monitoring evolving data[M].In:Proc.of the 16th Int'l Conf.on Data Engineering.IEEE Computer Society,2000.439 ~ 448. 被引量:1
  • 4[6]Ester M,Kriegel H-P,Sander J,etc.Incremental Clustering for Mining in A Data Warehousing Environment[M].In:Proceedings of 24th Internation conference on Very Large Data Base,New York:Morgan Kaufmann Publishers Inc,1998.323-333. 被引量:1
  • 5Gupte S, Masoud O, Martin R F K, Papanikolopoulos N P. Detection and classification of vehicles. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1): 37-47. 被引量:1
  • 6Rad R, Jamzad M. Real time classification and tracking of multiple vehicles in highways. Pattern Recognition Letters, 2005, 26(10): 1597-1607. 被引量:1
  • 7Kim Z W, Malik J. Fast vehicle detection with probabilistic feature grouping and its application to vehicle tracking. In: Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 524-531. 被引量:1
  • 8Sidla O, Paletta L, Lypetskyy Y, Janner C. Vehicle recognition for highway lane survey. In: Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems. Washington D.C., USA: IEEE, 2004. 531-536. 被引量:1
  • 9Ester M, Kriegel H P, Sander J, Xu X W. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, USA: AAAI, 1996. 226-231. 被引量:1
  • 10Karypis G, Han E H, Kumar V. Chameleon: hierarchical clustering using dynamic modeling. Computer, 1999, 32(8): 68-75. 被引量:1

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部