期刊文献+

分数(g,f)-2-覆盖图和分数(g,f)-2-消去图 被引量:1

On Fractional(g,f)-2-Covered Graphs and Fractional(g,f)-2-Deleted Graphs
下载PDF
导出
摘要 分别给出分数 (g,f ) - 2 -覆盖图和分数 (g,f ) - 2 -消去图的概念 ,以及一个图是分数 (g,f ) - 2 -覆盖图和分数 (g,f ) - 2 -消去图的若干充分条件 . In this paper,the fractional (g,f)-2-covered graph and the fractional (g,f)-2-deleted graph are defined,and some sufficient conditions for a graph to be fractional (g,f)-2-covered and fractional (g,f)-2-deleted are given.
作者 周思中
出处 《广西科学》 CAS 2004年第3期177-178,182,共3页 Guangxi Sciences
关键词 分数(g f)-2-覆盖图 分数(g f)-2-消去图 分数(G F)-因子 graph,fractional (g,f)-2-covered graph,fractional (g,f)-2-deleted graph,fractional (g,f)-factor
  • 相关文献

参考文献3

二级参考文献15

  • 1Pulleyblank,w.R.,FractionalMatchings and the Edmonds-Gallai Theorem, Disc. Appl. Math.16,(1987),51-58. 被引量:1
  • 2Edward R.Scheinerman and Daniel H.Ullman,Fractional Graph Theory, John Wiley andSonc,Inc. New York (1997). 被引量:1
  • 3Liu Guizhen, On (g, f)-Covered Graphs. Atca. Math. Scientia.8, (1988),2,181-184. 被引量:1
  • 4Anstee,R.R.,An Algorithmic Proof Tutte's f-Factor Theorem, J.Algorithms6,(1985),112-131. 被引量:1
  • 5Pulleyblank.w.R. Fractional Matckings and the Edmonds-Gallai Theorem[J]. Disc. Appl. Math. , 1987,16:51-58. 被引量:1
  • 6Edwark R. Scheinerman and Daniel H. Ullman. Fractional Graph Theory[M]. New York:John Wiley and Sonc,Inc. , 1997. 被引量:1
  • 7Yang Jingbo. Fractional (g,f)- Covered Graph and Fractional (g,f)- Deleted Graph[A]. Proceedings of the Sixth National Conference of Operation Research Society of China[C]. 2000,451-454. 被引量:1
  • 8Yang Jingbo, Ma Yinghong, Liu Guizhen. Fractional (g, f)- Factor of Graphs[J]. Acta Appl. Math. JUC.2001,16(4) :385-390. 被引量:1
  • 9Zhang Lanju,Liu Guizhen. Fractional κ- Factor fo Graphs[J]. J. Sys. Sei. and Math. Scis. 2001. 被引量:1
  • 10Liu Guizhen. On (g,f)- Factor and Factorization[J]. Acta Mathematica Sinica, 1994,37: 230-236. 被引量:1

共引文献26

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部