期刊文献+

基于Neumann边界条件的图像局部复原 被引量:2

Image Local Deblurring with Neumann Boundary Conditions
下载PDF
导出
摘要 图像复原是图像处理中的一个重要课题。人们通常将其当作全局问题来处理,这可能会导致非常庞大而不可行的l2问题。为了克服这个困难,本文提出一种新的局部图像复原算法;将大的降晰图像分成若干子图像块,分别对各块进行复原。该算法用经典的Tikhonov正则化方法求解病态反问题。为了抑制分块导致的边界噪声,算法引入Neumann边界条件和块部分重叠的思想。实验结果表明,该算法有效地降低了图像处理的复杂度,而且与全局算法相比,两者复原图像的质量很接近。 Blur removal is a fundamental issue in signal and image processing. It is generally treated as a global problem, which may result in a very large and infeasible l2 problem. To overcome this difficulty, a new local deblurring algorithm is proposed in this paper. It averagely divides a large noisy and blurred image into blocks and utilizes the classical Tikhonov regularization to restore them individually to produce the whole restored image. Local deblurring inevitably involves boundary problems. We consider two measures to damp boundary errors: the use of Neumann boundary conditions and partly overlapping blocks. Experimental results indicate that appropriate blocking effectively reduces the computational complexity and the performance of the new algorithm is close to that of the global one.
出处 《信号处理》 CSCD 2004年第4期399-402,共4页 Journal of Signal Processing
关键词 图像处理 局部图像复原算法 NEUMANN边界 图像矢量 image restoration neumann boundary toeplitz-hankel matrix
  • 相关文献

参考文献4

  • 1Mark R Banham.Aggelos K.Katsaggelos"Digital Image Restoration",IEEE Signal Processlng Magazine,Pp 24-41.March 1997. 被引量:1
  • 2Michael K NG.Raymond H Chan and Wua-cheng Tang.“A Fast Algorithm for DeMurring Models With Neumann Boundary Conditions'’.SIAM J.SCI Comput.Vol.21.No.3.PP.851-866,1999. 被引量:1
  • 3P.Hansen. Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems,Numer. Algorithms, 6(1994), pp, 1-35. 被引量:1
  • 4邹谋炎著..反卷积和信号复原[M].北京:国防工业出版社,2001:321.

同被引文献15

  • 1马彪,孟详固.图像模糊度参数估计与图像复原的实验及分析[J].微计算机应用,2006,27(5):513-516. 被引量:5
  • 2赵剡,李东兴,许东.抑制复原图像振铃波纹的频域循环边界算法[J].北京航空航天大学学报,2006,32(11):1290-1294. 被引量:11
  • 3M. M. Andrews. “Digital Image Restoration: A Survey ,” IEEE Computer, 7(5) : 36 -45, May 1974. 被引量:1
  • 4Mark R. banham, Aggelos K. Katsaggelos, "Digital Image Restoration", IEEE Signal Pressing Magazine, March 1997. 被引量:1
  • 5Kenneth R. Castleman," Digital Image Processing", 北京:电子工业出版社,2002. 被引量:1
  • 6M. M. Sondhi,“ Image Restoration: The Removal of Spatially Invariant Degradations,”. Proc . IEEE, July, 1972, 60 (7) : 842 - 853. 被引量:1
  • 7KP Lee, JG Nagy, L Perrone - Preprint May, 2002 - mathcs, emory, edu. 被引量:1
  • 8Aghdasi F, Ward R K. Reduction of Boundary Artifacts in Image Restoration[J]. IEEE Trans on Image Processing, 1996, 5(4) :611-61. 被引量:1
  • 9Woods J W, Biemond J, Tekalp A M. Boundary Value Problem in Image Restoration[C]//IEEE International Conference on ICASSP ' 85. [ S. l. ] : IEEE, 692-695. 被引量:1
  • 10Michael K N, Chan R H, Tang W C. A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions[J]. SIAM Journal Scientific Computing, 1999, 21(3) : 851-866. 被引量:1

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部