期刊文献+

金属塑性成形有限元六面体网格自动划分 被引量:2

Automatic generation of hexahedral mesh in bulk metal forming
下载PDF
导出
摘要 六面体网格具有计算精度高、网格数量少等特点 ,是工程三维有限元分析一种重要网格。本文提出了一种基于栅格的六面体网格自动划分方法 ,它首先采用栅格法生成核心网格 ,然后把核心网格与模型边界拟合 ,为克服由于边界拟合造成的表面网格质量下降 ,采用包络表面网格的方法生成零厚度表层网格 ,通过表面网格平滑和内部节点位置平滑处理 ,最终生成具有较高质量的全六面体网格。网格划分实例说明 :该法具有原理简单 ,算法可靠 ,编程方便 ,划分网格质量高等特点。最后还对该算法进行了讨论。 The hexahedral mesh is one of the most important tools in three-dimensional FEA because it can increase the accuracy of the solution and decrease the overall element count. In the present study, a general framework of hexahedral mesh generation of metal forming simulation based on master grid approach is presented, which includes identification of CAD or remeshing model, generation of core mesh, boundary mesh fitting, surface element layer (SEL) generation and mesh smoothing. The results clearly indicated that the algorithms proposed in this study is simple in principal, robustness in programming and can generate high-quality hexahedral mesh. Meanwhile, some important issues about this algorithm are discussed.
出处 《塑性工程学报》 EI CAS CSCD 2004年第4期48-51,共4页 Journal of Plasticity Engineering
基金 教育部跨世纪优秀人才计划基金资助项目 山东省科学技术发展计划资助项目 (0 31110 131)
关键词 六面体网格 栅格法 核心网格 包络表面 网格优化 hexahedral mesh core mesh boundary fitting surface element layer optimization
  • 相关文献

参考文献6

  • 1Ho Le K. Finite element mesh generation methods: a review and classification. Computer-Aided Design 1988 (20): 27-38 被引量:1
  • 2Shephard MS. Approaches to the automatic generation and control of finite element meshes. Applied Me chanics Reviews 1988, (40): 169-185 被引量:1
  • 3Geoge PL. Automatic Mesh Generation: Application to Finite Element Method. Wiley: New York 1991. 被引量:1
  • 4Schneiders R. A-grid algorithm for the generation of hexahedral element meshes, Engineering with Computers, 1996, (12): 168-177 被引量:1
  • 5T Black. Automated Conformal Hexahedral Meshing Constraints, Challenges and Opportunities, Engineering with Computers, 2001, (17): 201-210 被引量:1
  • 6Dae Young K, Yong taek I. Remeshing for metal forming simulation-Part Ⅱ: Three-dimensional hexahedral mesh generation. Int. J. Numer. Meth. Engng 2002 (53): 2501-2528 被引量:1

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部