摘要
研究了等式约束复系数FIR滤波器的Chebyshev设计问题 ,将交错定理从实域推广到复域带有等式约束的情况 ,得到了类似的交错定理 .描述了极值频率点组所满足的推广的交错特性 ,作为判断所得滤波器最优性的充分条件 .应用推广的交错特性提出了一个新的算法 ,即为推广的Parks McClellan算法 ,并用于若干具有带等式约束的复系数近似线性相位FIR滤波器的实例设计 .
The Chebyshev design of complex FIR finite impulse response filters with equation constrains is investigated. A similar alternation theorem is obtained by generalizing the alternation theorem to complex domain. An alternating characteristic is described,which is a sufficient condition that the optimal filter should satisfy. Applying this characteristic,a new algorithm which is a generalized Parks-McClellan algorithm is put forward. And design examples demonstrating the effectiveness of the proposed algorithm are given.
出处
《山东大学学报(工学版)》
CAS
2004年第4期40-44,共5页
Journal of Shandong University(Engineering Science)
基金
国家自然科学基金项目 (60 2 75 0 0 6)
山东省自然科学基金项目 (Y2 0 0 1G0 8)