Carmichael Numbers of Order 3
被引量:3
Carmichael Numbers of Order 3
出处
《数学进展》
CSCD
北大核心
2004年第4期505-507,共3页
Advances in Mathematics(China)
基金
Supported by NSFC(No.10128103)
参考文献8
-
1Maniadra Agrawal, Kayal N, Saxena N. Primes is in P [R]. Preprint 2002 August. Available at http:∥www.cse.iitk.ac.in/users/manindra/primality. ps. 被引量:1
-
2Kayal N, Saxena N. Towards a deterministic polynomial-time test [R]. Technical report I IT Kanpur, 2002.Available at http:∥www.cse.iitk.ac.in/research/btp2002/primality. html. 被引量:1
-
3Rajat Bhattacharjee and Prashant Pandey, Primality testing [R]. B. Technical report LIT Kanpur, 2001.Available at http:∥www.cse.iitk.ac.in/research/btp2001/primality. html. 被引量:1
-
4Zhu Wenyu, SunQi, Zhou Xianhua, Generalized Carmichael numbers[J], submitted. 被引量:1
-
5Kenneth Ireland, Michael Rosen. A Classical Introduction to Modern Number Theory [M]. Graduate Texts in Mathematics, Springer-Verlag, New York, 1990. 被引量:1
-
6Jack chernick. On fermat's simple theorem [J]. Bull. Amer. Math. Soc., 1939, 45: 269-274. 被引量:1
-
7Zhu Wenyu. Numbers which are Carmichael numbers and strong pseudoprimes to some based [J]. Journal of Sichuan University (Natural Science edition) (In Chinese), 1997,34(3):269-275. 被引量:1
-
8Alford W R. Andrew Granville and Carl Pomerance, There are infinitely many Carmichael numbers [J].Ann. of Math., 1994, 139(2): 703-722. 被引量:1
同被引文献7
-
1张振祥.多重精度算术软件包的设计与实现[J].计算机研究与发展,1996,33(7):513-516. 被引量:10
-
2Carmichael R D.On composite numbers p which satisfy the Fermat congruence ap-1≡1(mod p)[J].Amer Math Monthly,1912,19:22-27. 被引量:1
-
3华罗庚.数论导引[M].北京:科学出版社,1979.. 被引量:224
-
4Zhu Wen-yu, Sun Qi, Carmichael numbers of order 3[J]. J. Sichuan University (Nat. Sci. Ed. ), 2005, 42(1) :47. 被引量:1
-
5Ireland K, Rosen M, A classical introduction to modern number theory[M]. 2nd eel. New York:Springer-Verlag, 1990. 被引量:1
-
6Cohen H. A Course in Computational Algebraic Number Theory (GTM 138)[M]. Berlin:Springer-Verlag, 1996. 被引量:1
-
7Zhang Zhen-xiang, Using Lucas sequences to factor large integers near group orders[ J ]. Fibonacci Quarterly, 2001, 39 (3) :228. 被引量:1
-
1於遒,张新建,翟余华.群的s^*-拟正规性及其性质[J].淮阴师范学院学报(自然科学版),2003,2(4):271-273. 被引量:1
-
2李其琛,於遒.有限群的弱拟正规子群及其性质[J].临沂师范学院学报,2002,24(6):16-17.
-
3李双娥.关于不定方程x^3-27=19y^2[J].湛江师范学院学报,2013,34(3):44-48.
-
4吴从炘.Transfer theorems for fuzzy semi-groups[J].Journal of Harbin Institute of Technology(New Series),2000,7(3):19-23.
-
5李毓佩.寻找素数[J].初中全科导学,2011(10):12-13.
-
6Qiao Jin,Gu Yongxing Department of Applied Mathematics, Chongqing University, Chongqing 630044, China.On Factorization of Meromorphic Functions[J].Acta Mathematica Sinica,English Series,1997,13(4):509-512.
-
7李双娥.关于不定方程x^3+27=19y^2[J].重庆师范大学学报(自然科学版),2007,24(4):30-32. 被引量:2
-
8及万会.关于正负相间方幂和中因子p的指数[J].纺织高校基础科学学报,2005,18(2):131-137.
-
9何仲洛.C_n^k的素数因子[J].湖州师范学院学报,1980,0(S1):4-10.
-
10韩猛,刘德,罗成.集值Vitali-Hahn-Saks-Nikodym定理[J].数学学报(中文版),2010,53(3):525-530. 被引量:1