期刊文献+

凝固微观组织的多层次模拟 被引量:11

Multi-scale modeling of solidification microstructure
下载PDF
导出
摘要 通过引入溶质再分配、溶质扩散、界面能各向异性和界面曲率,构建了描述合金凝固微观组织形态演变的元胞自动机模型。在介观和微观尺度上的模拟结果表明,该模型可有效地解决微观组织形成的多尺度问题。模拟结果清晰地再现了与实测结果相一致的枝晶形态和生长现象。根据分形理论采用分维定量比较了模拟结果和实验结果,两者的计盒维数分别为1.703和1.694,阐述了分维定量表征枝晶形貌的物理含义。模拟结果表明熔体过冷度和树枝晶的计盒维数呈近似抛物线关系。 A modified model was built up by adopting solute diffusion, solute redistribution, interface anisotropy and interface curvature at S/L interface. Simulation results at mesoscopic and microscopic levels exhibit a number of experimental features, which indicate that the present model can effectively solve the multi-scale problem during solidification. Based on the fractal theory, the dendritic morphologies from simulation and experiment were compared using fractal dimension, the box counting dimensions of simulation and experiment results are 1.703 and (1.694) respectively. The physical meanings of fractal dimension characterizing dendritic morphology was discussed. The results of simulations indicate that the relationship between melt undercooling and box counting dimension of dendrite is close to parabola.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2004年第6期928-933,共6页 The Chinese Journal of Nonferrous Metals
基金 江西省教育厅科技项目 江西省自然科学基金资助项目(0250006)
关键词 微观组织模拟 多尺度 元胞自动机 分维 microstructure modeling multi-scale cellular automaton fractal dimension
  • 相关文献

参考文献10

  • 1[1]ZHU Pan-ping, Smith R W. Dynamic simulation of crystal growth by monte carlo method- Ⅰ . Model description and kinetics[J]. Acta Metall Mater, 1992, 40:683 692. 被引量:1
  • 2[2]ZHU Pan-ping, Smith R W. Dynamic simulation of crystal growth by monte carlo method-Ⅱ. Ingot microstructures[J]. Acta Metall Mater, 1992, 40:3369 - 3379. 被引量:1
  • 3[3]Rappaz M, Gandin C A. Probabilistic modeling of microstructure formation in solidification processes[J]. Acta Metal Mater, 1993, 41:345 - 360. 被引量:1
  • 4[4]Gandin G A, Rappaz M. A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta Metal Mater, 1994, 42: 2233-2246. 被引量:1
  • 5[5]Nastac L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J]. Acta Mater, 1996, 47: 4253-4262. 被引量:1
  • 6[7]Ode M, Gyoon S, Suzuki T. Recent advances in the phase-field model for solidification[J]. ISIJ International, 2001, 41(10): 1076-1082. 被引量:1
  • 7[8]Warren J A, Boettinger W J. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase field method[J]. Acta Metal Mater, 1995, 43: 689-703. 被引量:1
  • 8[11]Dilthey U, Paviyk V. Numerical simulation of dendritic morphology and grain growth with cellular automata[A]. Modeling of Casting, Welding and Advanced Solidification Processes Ⅷ[C]. 1998. 589-596. 被引量:1
  • 9[12]Nastac L. Simulation of microstructure evolution during solidification of inconel 718 [J]. AFS Transaction, 1996, 104: 425-434. 被引量:1
  • 10[14]Glicksman M E, March S P. Handbook of Crystal Growth lB[M]. North Holland: Amsterdam Publishers, 1993. 被引量:1

同被引文献86

引证文献11

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部