期刊文献+

L波段掺铒光纤放大器的增益平坦滤波器设计 被引量:5

Design on Gain-Flattening Filters of L-Band EDFAs
原文传递
导出
摘要 EDFA的增益平坦化是WDM系统中的重要问题 ,用成本低、插损小的光纤光栅实现该功能是一项有吸引力的方案 ,采用剥层法设计了基于啁啾光栅的增益平坦滤波器。基于时间因果律的剥层算法将光纤光栅看成一个分离的模型 ,由一系列长度为Δ的复反射器所组成 ,每个反射器的后端耦合系数都可由它的前端耦合系数递归地求出 ,从而能快速、精确地反演出光栅的耦合系数函数。啁啾光栅的目标反射谱由理想的增益平坦滤波器透射谱获得 ,利用与反射谱群时延有关的常数α可控制光栅的长度 ,α取值为 0 0 0 2 4cm2 时 ,对应的光栅长度为 3 5cm。用剥层法反演出耦合系数函数后 ,又通过解Riccati方程模拟了合成光栅的透射谱。数值模拟结果显示理想透射谱与合成光栅透射谱之间的峰峰值误差小于 0 1dB ,并且在工作带宽范围内 ,透射谱群时延的变化量小于 0 6 ps ,表明该滤波器对系统没有额外的色散影响。 Gain flattening of EDFA (erbium-doped fiber amplifier) is a critical issue for WDM (wavelength-division-multiplex) system, and cost efficiency and insertion loss make in-fiber gratings very attractive candidates for this application. A chirp fiber grating to flatten the gain spectrum of L-EDFAs by using layer-peeling method is designed. This algorithm, based on the law of causality, considers fiber Bragg gratings as a discrete model, which divides the entire grating into a series of discrete, complex reflectors with a distance Δ between the adjacent reflectors, the coupling coefficient at the back of a reflector can be derived from one at the front of this reflector recursively, so coupling coefficient function can be extracted rapidly and accurately. The target reflection spectrum of chirp gratings is derived from the ideal transmission spectrum of gain-flattening filters. A constant, α, is utilized to control the length of chirp gratings, which is relative with group time delay of reflection spectrums. When α is equal to 0.0024 cm2, the grating has a short length of 3.5 cm. After extracting coupling coefficients of the chirp grating using layer-peeling algorithm, transmission spectrum of the synthesized grating by solving Riccati equation is simulated, numerical analysis indicates that peak-to-peak error function is below 0.1 dB between ideal and realistic transmission spectrums. The variation of group time delay in transmission spectrum is less than 0.6 ps over entire operation bandwidth; therefore, the grating has no impact of additional chromatic dispersion on system performance.
出处 《中国激光》 EI CAS CSCD 北大核心 2004年第7期829-832,共4页 Chinese Journal of Lasers
关键词 激光技术 增益平坦 误差函数 剥层法 L波段掺铒光纤放大器 laser technique gain-flattening filter error function layer-peeling method L-band erbium-doped fiber amplifiers
  • 相关文献

参考文献11

  • 1J. F. Massicott. R. Wyatt, B. J. Ainslie. Low noise operation of Er^3- doped silica fiber amplifier around 1. 6 μm [J].Electron. Lett.. 1992. 28(20) :1924-1925. 被引量:1
  • 2H. S. Chung, M. S. 1.ee, D. 1.ee et al.. Low noise, high efficiency L-band EDFA with 980 nm pumping [J]. Flectron.Left. , 1999, 35(13):1099-1100. 被引量:1
  • 3S. Yamashita, M. Nishihara. L-band erbium doped fiber amplifier incorporating an inline fiber grating laser [J]. IEEE J. Select. Topics Quantum Electron. , 2001, 7(1):44-48. 被引量:1
  • 4蒙红云,杨石泉,袁树忠,高伟清,宁鼎,董孝义.基于后向ASE抽运的L-波段掺铒光纤放大器[J].中国激光,2002,29(10):905-907. 被引量:3
  • 5蒙红云,高伟清,刘艳格,张昊,袁树忠,董孝义.基于光纤环形镜的L-波段掺铒光纤放大器增益的提高[J].中国激光,2004,31(7):825-828. 被引量:8
  • 6Y. Sun, J. L. Zyskind, A. K. Srivastava. Average inversion level, modeling, and physics of erbium-doped fiber amplifiers[J]. IEEE J. Select. Topics Quantum Electron. , 1997, 3(4) :991-1007. 被引量:1
  • 7J. M. Oh, H. B. Choi, D. Leeet al.. Demonstration of highly efficient flat-gain L-band erbium-doped fiber amplifies by incorporating a fiber Bragg grating [ J ]. IEEE Photon.Technol. Lett. , 2002, 14(9):1258-1260. 被引量:1
  • 8Kai Song, M. Premaratne. Effects of SPM, XPM, and fourwave-mixing in L-band EDFAs on fiber-optic signal transmission [J]. IEEE Photon. Technol. Lett. , 2000, 12(12) :1630-1633. 被引量:1
  • 9J. Yu. P. Jeppesen, B. Palsdottir, S. N. Knudsen. Reducing pulsewidth broadening in L-band EDFAs by use of a new L-band EDF [J]. IEEE Photon. Technol. Lett. , 2001, 13(7):654-656. 被引量:1
  • 10A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins a al..Long-period fiber-grafing-based gain equalizers [J]. Opt.Lett., 1996, 21(4):336-338. 被引量:1

二级参考文献19

  • 1蒙红云,高伟清,刘艳格,张昊,袁树忠,董孝义.基于光纤环形镜的L-波段掺铒光纤放大器增益的提高[J].中国激光,2004,31(7):825-828. 被引量:8
  • 2H. Ono. M. Yamada, T. Kartamori et al.. , Low noise and high gain 1. 58 μm band Er^3+ doped fibre amplifiers with cascade configurations [J]. Electron. Lett.. 1997, 33 (17):1477-1479. 被引量:1
  • 3H. S. Chung, M. S. Lee, D, Lee et al.. Low noise, high efficiency L-band EDFA with 980 nm pumping [J]. Electron.Lett., 1999. 35(13):1099-1100. 被引量:1
  • 4Tsair-Chun I.iang, Yung-Kuang Chen, Jing Hong Su et al.. Optimum configuration and design of 1480-nm pumped L-band gain flattened EDFA using conventional erbium doped fiber[J]. Opt.Commun. , 2000, 183:51-63. 被引量:1
  • 5J. Nilsson, S. Y. Sun, S. T. Hwange/al.. Long-wavelength erbium doped fiber amplifier gain enhanced by ASE end-reflectors [J]. IEEE Photon. Technol. Lett.. 1998. 10(11):1551-1553. 被引量:1
  • 6J. Lee, U. C. Ryu. S. J. Ahnet al.. Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effecl in the umpumped EDF section [J]. IEEE Photon. Technol. Lett., 1999, 11(1):42-44. 被引量:1
  • 7M. A. Mahdi, H. Ahmad. Gain enhanced L-band Er^3+ -doped fiber amplifier utilizing unwanted backward ASE [J]. IEEE Photon. TechTzol. Lett. , 2001, 13(10):1067-1069. 被引量:1
  • 8C. Randy Giles, Emmanuel Desurvire. Modeling erhium-doped fiber amplifiers [J]. J. Lightwave Technol. , 1991, 9(2) :271-283. 被引量:1
  • 9M. Karasek. Gain enhancement in gain-shifted erbium-doped fiber amplifiers for WDM applications [J]. IEEE Photon,Technol. Lett., 1999, 11(9):1111-1113. 被引量:1
  • 10Aydin Yeniay, Renyuan Gao. Single stage high power L-band EDFA with multiple C-band seeds [C]. OFC'2002, ThJ2, 457-458. 被引量:1

共引文献8

同被引文献34

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部