期刊文献+

应力函数及其对偶理论在有限元中的应用 被引量:3

APPLICATION OF STRESS FUNCTIONS AND ITS DUAL THEORY TO FINITE ELEMENT
下载PDF
导出
摘要 借助于Cosserat连续介质模型,探讨了应力函数和位移对避免有限元C^1连续性困难的互补性作用,通过对应力函数对偶理论的深入分析,为将应力函数列式得到的余能单元转化为具有一般位移自由度的势能单元提供了严格的理论基础,在此基础上,给出应用应力函数构造有限元的一般方法。 Cosserat's continuum is a generalized model of the classical elasticity. Many important elastic problems can be taken as its special case subjected to some geometric/mechanical constrains. In some of these problems, there exist the C^1 continuity difficulty in finite element formulation when the elements are constructed in the displacement space. Using Cosserat's continuum, the present work discusses the reason of the appearance of the C^1 continuity difficulty. It is noted that when geometric or/and mechanical constraint(s) is(are) enforced upon Cosserat's model there must exist C^1 continuity requirement for either displacement field or stress function field. And the key point is that only one of these two fields has the C^1 continuity requirement and the other is free from this difficulty. So for some problems with C^1 continuity difficulty in displacement formulation, it is a natural approach to avoid this difficulty by using formulation in stress function space. Nevertheless, the finite element constructed in stress function space is not convenient to apply because stress functions have no explicit physical meaning and then it is difficult to appoint boundary condition for them. For this practical reason, the dual theory of stress functions is presented to provide an approach to transform an clement with stress functions as degree of freedom (DOF) to the element with ordinary displacement as DOF. Based on this dual theory, a general way to construct finite element using stress functions is discussed.
出处 《力学学报》 EI CSCD 北大核心 2004年第4期419-426,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10172078)~~
关键词 应力函数 对偶理论 有限元 Cosserat连续介质模型 计算力学 finite element C^1continuity Cosserat's continuum stress function dual theory
  • 相关文献

参考文献18

二级参考文献30

  • 1Voigt W. Theoretische Studien uber die Elasticitatsverhaltnisse der Krystalle. Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Gottingen, 1887. 34 被引量:1
  • 2Cosserat EF. Theorie des corps deformables. Paris: Herman, 1909 被引量:1
  • 3Mindlin RD, Tiesten HF. Effects of couple-stresses in linear elasticity. Arch Rational Mech Anal, 1962, 11:415~448 被引量:1
  • 4Toupin R. Elastic materials with couple-stresses. Arch Rational Mech Anal, 1962, 11:385~414 被引量:1
  • 5Koiter WT. Couple stresses in the theory of elasticity, Ⅰand Ⅱ. Proc Royal Netherlands Acad Sci Series B, 1964,LXV Ⅱ: 17~44 被引量:1
  • 6Green AE, Rivlin RS. Multipolar continuum mechanics.Arch Rational Mech Anal, 1964, 17:113~156 被引量:1
  • 7Marsden JE, Hughes T JR. Mathematical Foundations of Elasticity. New York: Dover, 1994 被引量:1
  • 8Simo JC, Fox DD, Hughes T JR. Formulation of finite elasticity with independent rotations. Compt Meth Appl Mech Engng, 1992, 95:277~288 被引量:1
  • 9Hermann LR. Mixed finite elements for couple-stress analysis. In: Atluri SN, et al. eds. Hybrid and Mixed Finite Element Methods. New York: Wiley, 1983 被引量:1
  • 10吴长春,李雷,李子然.计算工程科学中的杂交元方法.见:袁明武,孙树立.中国计算力学大会论文集.中国计算力学大会,广州:2001,北京:北京大学出版社,2001(Wu Changchun,Li Lei, Li Ziran. Hybrid finite element method in computational engineering science. In: Yuan Mingwu, Sun Shuli eds, Computational Mechanics in Engineering and Science. Conference of Computational Mechanics of China,Guangzhou, 2001. Beijing: Peking University Press, 2001(in Chinese)) 被引量:1

共引文献32

同被引文献34

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部