期刊文献+

Cf/SiC复合材料抗氧化涂层的制备及性能 被引量:4

A Study of Oxidation Protection Coatings of Cf/SiC Composite
下载PDF
导出
摘要 在氧化性环境中,高于400℃时碳纤维开始氧化,限制了Cf SiC复合材料的应用。通过在Cf SiC复合材料表面制备抗氧化涂层体系,可以有效地保护碳纤维不被氧化。本实验制备了含CVD SiC粘接层、自愈合功能层和CVD SiC抗冲蚀层的三层涂层体系,并进行了氧化失重试验。氧化失重试验结果表明,仅有CVD SiC涂层的试样氧化失重率较大,不能有效地保护材料,而含有自愈合功能层的三层涂层体系的材料试样,在800℃~1200℃的氧化失重率非常小,1000℃下氧化288h的失重率仅为2.3%,弯曲强度仍保持为452.9MPa。同时实验发现,试样在氧化失重试验后,其CVD SiC涂层的表面形貌有明显改变,这主要是由SiC氧化形成SiO2薄膜所致,并且在1200℃下所生成的SiO2薄膜有表面收缩趋势,具有液相膜的部分特征。 The hindrance which currently precludes the use of Cf/SiC composites is the oxidation of carbon fiber at the temperature higher than 400℃.Therefore,it is necessary to develop coatings capable of protecting Cf/SiC components from oxidation.This coatings consist of three layers,a CVD-SiC bonding layer,a self-sealing active layer by forming glassy phases on exposure to oxygen,and a CVD-SiC erosion resistant layer.Oxidation tests was carried out.The results indicated that the samples with only CVD-SiC coating have much mass loss,and the samples with three layers of coatings including a self-sealing active layer have little mass loss from the temperature of 800℃ to 1200℃.Samples with self-sealing active layer which underwent an oxidation test at 1000℃ in the atmosphere for 288hr suffered only 2.3% mass loss and a residual strength of 452.9MPa.At the same time,CVD-SiC shows various appearance after oxidation at 800℃,1000℃,and 1200℃.The surface formed at 1200℃ has some liquid phase characteristics.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2004年第4期57-61,共5页 Journal of National University of Defense Technology
基金 "863"基金资助项目(2002AA305102) 国家部委基金资助项目(41312011002)
关键词 抗氧化涂层 CF/SIC复合材料 氧化试验 oxidation protection coatings Cf/SiC composites oxidation test
  • 相关文献

参考文献9

  • 1[1]Sheehan J E.Oxidation protection for carbon fiber composites[J].Carbon,1989,27:709-717. 被引量:1
  • 2[2]Westwood M E, Day R J,et al.The Use of Finite Element Analysis in the Design of Integrated Oxidation Protection Systems for Ceramic Matrix Composites[J].Key.Eng.Mater.1997,127-131: 1233-1240. 被引量:1
  • 3[3]Aparicio M, Durán A,et al.Yttrium Silicate Coatings for Oxidation Protection of CarbonSilicon Carbide Composites[J]. J.Am.Ceram.Soc. 2000,83:1351-1355. 被引量:1
  • 4[4]Leite H, Dambacher U,et al.Microstructure and Properties of Multilayer Coatings with Covalent Bonded Hard Materials[J]. Surf.Coat.Tech.1999,116-119:313-320. 被引量:1
  • 5[5]Naslain R, Pailler R,et al.Processing of Ceramic Matrix Composites by Pulsed-CVI and Related Techniques[J].Key.Eng. Mater. 2002,206-213:2189-2192. 被引量:1
  • 6[6]Cheng Laifei, Xu Yongdong,et al.Corrosion of a 3D-C/SiC Composite in Salt Vapor Environments[J].Carbon,2002,40:877-882. 被引量:1
  • 7梁训裕,刘景林编译..碳化硅耐火材料[M].北京:冶金工业出版社,1981:365.
  • 8[8]Carruth M, Baxrwe D,et al.Hot-corrosion of silicon carbide in combustion gases at temperatures above the dew point of salts[J]. J.Eur.Ceram.Soc. 1998,18:2331-2338. 被引量:1
  • 9[9]Fan Z,Song Y,et al.Oxidation Behavior of Fine-grained SiC-B4C/C Composites up to 1400℃[J].Carbon ,2003,41:429-436. 被引量:1

同被引文献80

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部