期刊文献+

一种快速的间接关联挖掘算法 被引量:1

下载PDF
导出
摘要 给出了一个基于候选间接关联反单调性和频繁项目对支持矩阵的不需要生成所有频繁集的直接挖掘项目对之间间接关联的挖掘算法,并在一个Web log的真实数据集上进行了试验,与现有算法的比较表明该算法具有更好的性能。
出处 《高技术通讯》 EI CAS CSCD 2004年第7期49-52,共4页 Chinese High Technology Letters
  • 相关文献

参考文献9

  • 1Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases.In:Proc ACM SIGMOD Conference on Management of Data.Washington D C,1993.207 被引量:2
  • 2Melamed D.Automatic construction of clean broad-coverage translation lexicons.In:2nd Conference of the Association for Machine Translation in the Americas (ATMA 96).Bombay,India,1996 被引量:2
  • 3Tan P N,Kumar V,Srivastava J.Indirect association:mining higher order dependencies in data.In:PKDD 2000.Lyon,2000.632 被引量:2
  • 4Tan P N,Kumar V,Kuno H.Using SAS for mining indirect associations in data.In:Proc of the Western Users of SAS Software Conference.Los Angeles,2001 被引量:2
  • 5Tan P N,Kumar V.Mining indirect associations in web data.In:WebKDD 2001.San Francisco,2001 被引量:2
  • 6Brin S,Motwani R,Silverstein C.Beyond market baskets:generalizing association rules to correlations.In:Proc ACM SIGMOD Intl Conf Management of Data.AZ:Tucson,1997.265 被引量:1
  • 7Blake C L,Merz C J.UCI repository of machine learning databases.http://kdd.ics.uci.edu/databases/msweb/msweb.data.html 被引量:1
  • 8Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering.In:Proc Fourteenth Conference on Uncertainty in Artificial Intelligence(UAI'98).Madison,Wisconsin,1998 被引量:1
  • 9Zheng Z,Kohavi R,Mason L.Real world performance of association rule algorithms.In:KDD-2001.San Francisco,2001.401 被引量:1

共引文献1

同被引文献12

  • 1陈安龙,唐常杰,陶宏才,元昌安,谢方军.基于极大团和FP-Tree的挖掘关联规则的改进算法[J].软件学报,2004,15(8):1198-1207. 被引量:30
  • 2Ceglar A, Roddick J F. Association mining. ACM Computing Surveys, 2006, 38(2): 1-42. 被引量:1
  • 3Agrawal R, lmielinski T, Swami A. Mining associations between sets of items in massive databases. In: Proceedings of the 1993 ACM SIGMOD Intematiorial Conference on Management of Data. New York: ACM Press, 1993. 207-216. 被引量:1
  • 4Agrawal R, Srikant R. Fast algorithms for mining association rules. In : Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann, 1994. 487-499. 被引量:1
  • 5Park J S, Chen M S, Yu P S. An efficient hash-based algorithm for mining association rules. In: Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1995. 175-186. 被引量:1
  • 6Toivonen H. Sampling large databases for association rules. In: Proceedings of 22th International Conference on Very large Data Bases. San Francisco, CA: Morgan Kaufmann, 1996. 134-145. 被引量:1
  • 7Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM-SIGMOD International Conference on Management of Data. New York: ACM Press, 2000. 1-12. 被引量:1
  • 8Liu G M, I,u H J, Lou W W el al. Efficient mining of frequent patterns using ascending frequency ordered prefix-tree. Data Mining and Knowledge Discovery, 2004, 9 ( 3 ) : 249- 274. 被引量:1
  • 9Grahne G, Zhu J. Fast algorithms for frequent itemset inining using FP-trees. IEEE Transaction on Knowledge and Data Engineering, 2005, 17(10) : 1347-1362. 被引量:1
  • 10Zaki M J. Scalable algorithms for association mining. IEEE Transactions on. Knowledge and Data Engineering, 2000, 12 (3) : 372-390. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部