摘要
Vertical wave-induced mixing parameter Bv expressed in wave number spectrum was estimated in the Yellow Sea. The spatial distributions of Bv averaged over upper 20 m in 4 seasons were analyzed. It is the strongest in winter because of winter monsoon, and the weakest in spring. Since in summer it plays an important role for circulation of upper layers, its vertical structure was also discussed. Two simulations with and without wave-induced mixing in this season were performed to evaluate its effect on temperature distribution. Numerical results indicate that wave-induced mixing could increase the mixed layer thickness greatly.
Vertical wave-induced mixing parameter Bv expressed in wave number spectrum was estimated in the Yellow Sea. The spatial distributions of Bv averaged over upper 20 m in 4 seasons were analyzed. It is the strongest in winter because of winter monsoon, and the weakest in spring. Since in summer it plays an important role for circulation of upper layers, its vertical structure was also discussed. Two simulations with and without wave-induced mixing in this season were performed to evaluate its effect on temperature distribution. Numerical results indicate that wave-induced mixing could increase the mixed layer thickness greatly.
基金
SupportedbytheNationalBasicResearchProgramofChina(No.G1999043809)theNationalScienceFoundationofChina(No.49736190)theNationalYoungScientistProgramofChina(No.40206003).