期刊文献+

基于封闭项目关联规则集压缩方法

A compact method for association rules based on closed items
原文传递
导出
摘要 关联规则挖掘能使我们发现数据库中大量项目与项目之间的相关关系,但是用传统关联规则生成方法所生成的规则一是数量庞大,二是其中包含许多具有相同意义的规则,这必然对用户理解和提取信息带来干扰.通过求封闭项目集大大消减了频繁项目集数量,再由封闭项目集构造一种新的存储机制———近似格,基于近似格可以得到冗余度较小的关联规则,从而提供用户简洁紧凑又无信息丢失的关联规则集. Association rule mining can discover a lot of interesting relations among a large number of items of database.But the traditional association rule mining framework produces too many rules and many of them implicate the same means which will disturb understand and extract information for users.Through found the closed items it can be dramatically reduced the number of frequent itemsets.It is present a new framing of store namely pseudo lattice.At the help of pseudo lattice it is discovered association rules with few redundant,so both simplify and without loss of information for association rules present to user.
出处 《云南大学学报(自然科学版)》 CAS CSCD 2004年第4期301-305,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 云南省自然科学基金资助项目(2002F0013M).
关键词 封闭项目 关联规则集 关联规则挖掘 冗余规则 近似格 压缩方法 相关性 封闭项目集 association rules closed items pseudo lattice redundant rules
  • 相关文献

参考文献12

  • 1[1]Jiawei Han,Michelin Kamber.Data mining concepts and techniques[M].北京:机械工业出版社,2001. 被引量:4
  • 2[2]KLEMETINEN M,MANNILA H,RONKAINEN P,et al.Finding interesting rules from large sets of discovered association rules[A].Proc of the 3rd Int'l Conf.on information and knowledge management[C].Maryland:ACM Press,1994.402-407. 被引量:1
  • 3[3]MEGIDDO N,SRIKANT R.Discoverying predictive association rules[A].Proc of 4th Int'l Conf on knowledge discovery and Data mining[C].New York:AAAI Press,1998.274-278. 被引量:1
  • 4[4]PADMANABHAN B,TUZHILIN A.A belief-driven method for discovering unexpected patterns[A].Proc 4th Int'l Conf on knowledge discovery and Data Mining[C].New York:AAAI Press,1998.54-63. 被引量:1
  • 5[5]SILBERSCHATZ A,TUZHILIN A.What makes patterns interesting in knowledge discovery systems[J].IEEE Tran.on Knowledge and Data Engineering,1996,8(6):970-974. 被引量:1
  • 6[6]NT R,LAKSHMANAN L,HAN J.Exploratory mining and pruning optimizations of constrained association rules[A].Proc of the ACM SIGMOD Int'l conf on Management of Data[C].New York:ACM Press,1998.13-24. 被引量:1
  • 7[7]BAYARDO R,AGRAWAL R,GUNOPULOS D.Constraint-based rules mining in large dense database[A].Proc of the 15th Int'l conf on Data Engineering[C].San Diego:CA,1999.188-197. 被引量:1
  • 8[8]LIU B,HSU W,MA Y.Pruning and summaring the discovered associations[A].ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining[C].New York:ACM Press,1999.125-134. 被引量:1
  • 9[9]BRIN S,MOTWANI R,SILVERSTEIN R.Beyond market basket:Generalizing association rules to correlation[A].Proc.SIGMOD-97 Int'l Conf Management of Data Tucson,Arizona[C].New York:ACM Press,1997.265-276. 被引量:1
  • 10[10]BRIN S,MOTWANI R,ULLMAN J D,et al.Dynamic itemset counting and implication rules for market basket data[A].Proc of 1997 ACM SIGMOD Int'l Conf on Management of Data[C].Tucson,Arizona,USA:ACM Press,1997.255-264. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部