摘要
A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.
A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.
基金
Project supported by the National Natural Science Foundation of China (No.10176011).