期刊文献+

仲玻色子相干态的叠加态的量子统计性质 被引量:2

Quantum Statistical Properties of Superposition States of Parabose Coherent States
原文传递
导出
摘要 研究了仲玻色子相干态的叠加态的振幅m次方压缩和高阶反聚束效应等量子统计性质,发现仲玻色子相干态的叠加态仅存在振幅奇数次方压缩效应,并给出了振幅m次方压缩和高阶反聚束效应与叠加系数之间的关系。奇偶相干态、相干态的叠加态和仲玻色子奇偶相干态的有关结果均作为特例包含在结论中。 Quantum statistical properties of superposition states of parabose coherent states were studied.Odd-order power amplitude m-th power squeezing effect can appear in this superposition states of the coherent states.The relation between amplitude m-th power squeezing or higher-order antibuncing effect and superposition coefficient is obtained.The relevant results of even and odd coherent states and superposition states of coherent states and even and odd parabose coherent states are all contained in the more general conclusions of this paper as special cases.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2004年第6期742-745,749,共5页 Journal of Optoelectronics·Laser
关键词 仲玻色子相干态 叠加态 振幅m次方压缩 反聚束效应 叠加系数 parabose coherent states amplitude m-th power squeezing antibunching effect
  • 相关文献

参考文献12

  • 1[1]Glauber R J.The quantum theory of optical coherence [J].Phys Rev,1963.130:2529. 被引量:1
  • 2[2]XlA Yun-jie,GUO Guang-can.Some properties of even and odd coherent states[J].Chinese Journal of Quantum Electronics(量子电子学),1988,5(4):301-305.(in Chinese) 被引量:1
  • 3[3]Xia Y J,Guo G C.Nonclassical properties of even and odd coherent states[J].Phys Lett A ,1989,136(6) :281-283. 被引量:1
  • 4[4]XlA Yun-jie,LI Hong-zhen,GUO Guang-can.Higher-order squeezing and quasiprobability distribution functions of eyen and odd coherent states[J].Acta Physica Sinica(物理学报),1991,40(3):386-392.(in Chinese) 被引量:1
  • 5[5]ZHU Cong-xu,DENG Hong-gui.Generalized even and add coherent states of a finite-dimensional space non-harmonic oscillator and their nonclassical properties[J].J of Optoelectronics·Laser(光电子·激光),2000,11(3):320-323.(in Chinese) 被引量:1
  • 6[6]ZHOU Hong-mei.Generalized even and odd coherent states of a q-deformation non-harmonic oscillator and their nonclassical properties[J].J of Optoelectronics ·Laser(光电子·激光),2001,12(4):407-409.(in Chinese) 被引量:1
  • 7[7]Sharma J K,Mehta C L,Sudarshan E C G.Para-bose coherent states[J].J Math Phys,1978,19:2089-2093. 被引量:1
  • 8[8]Ohnuki Y,Kamefuchi S.Quantum Field Theory and Parastatistic[M].Berlin:Spring,1982. 被引量:1
  • 9[9]Jing S.Two-parabose Coherent States[J].J Phys.A:Math Gen,1998,31:6839-6848. 被引量:1
  • 10[10]HUANG Li-xia.Parabose even and odd coherent states [J].Journal ofNanchang Univetsity(Natural Science)(南昌大学学报(自然科学版)),2000,24(3):248-254.(in Chinese) 被引量:1

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部