期刊文献+

The Asymptotic Behavior of the Ruin Probability within a Random Horizon 被引量:3

The Asymptotic Behavior of the Ruin Probability within a Random Horizon
原文传递
导出
摘要 Subject to the assumption that the common distribution of claim sizes belongs to the extendedregular variation class,the present work obtains a simple asymptotic formula for the ruin probability within arandom or nonrandom horizon in the renewal model. Subject to the assumption that the common distribution of claim sizes belongs to the extendedregular variation class,the present work obtains a simple asymptotic formula for the ruin probability within arandom or nonrandom horizon in the renewal model.
机构地区 SchoolofFinance
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2004年第2期353-356,共4页 应用数学学报(英文版)
基金 Supported by the National Statistical Science Research Project (No.LX0317)
关键词 ASYMPTOTICS extended regular variation class finite time ruin probability renewal model Asymptotics extended regular variation class finite time ruin probability renewal model
  • 相关文献

参考文献5

  • 1Embrechts, P., Veraverbeke, N. Estimates for the probability of ruin with special emphasis on the poesibility of large claims. Insurance Math. Econom., 1:55-72 (1982). 被引量:1
  • 2Foss, S., Zachary, S. The maximum on a random time interval of a random walk with long-tailed increments and negative drift. Ann. Appl. Probab., 13:37-53 (2003). 被引量:1
  • 3Kaa8, R., Tang, Q. Note on the tail behavior of random Walk maxima with heavy tails and negative drift.N. Am. Actuar. J., 7(3): 57-61 (2003). 被引量:1
  • 4Kiefer, J., Wolfowitz, J. On the characteristics of the general queueing process, with applications to random walk. Ann. Math. Statist., 27:147-161 (1956). 被引量:1
  • 5Tang, Q., Su, C., Jiang, T.,Zhang, J. Large deviations for heavy-tailed random sums in compound renewal model. Statist. Probab. Lett., 52(1): 91-100 (2001). 被引量:1

同被引文献7

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部