期刊文献+

偶特征有限域上一类正规基及其对偶基(英文) 被引量:2

A Class of Special Normal Bases and Their Dual Bases Over Finite Fields With Even Characteristic
原文传递
导出
摘要 设正整数n(≥2),N={α_i|i=0,1,…,n-1)是有限域F_(2n)在F_2的正规基,且t_i=Tr(αα_i)(i=0,1,…,n-1),其中Tr(α)是α∈F_(2n)在F_2上的迹映射.本文讨论了F_(2n)在F_2上的满足如下条件的高斯正规基的存在性:t_0=t_1=t_(n-1),t_i=0(i≠0,1,n-1).给出了这种正规基的对偶基,并由此确定了F_(2n)在F_2上满足上述条件的全部最优正规基. Let n(≥2)be an integer,N={α_i|i=0,1,…,n-1} be a normal basis of F_(2n)over F_2,and t_i=Tr(ααi)(i=0,1,…,n-1),where Tr(α)denotes the trace mapping ofα∈F_(2n)over F_2.In this paper,we discuss the existence of Gauss period normal bases,satisfying t_0=t_1=t_(n-1)and others equal to 0,of F_(2n) over F_2.We also obtain the dual for these normal bases and then determine all optimal normal bases of F_(2n) over F_2 satisfying the above condition.
作者 李波 廖群英
出处 《数学进展》 CSCD 北大核心 2015年第3期394-404,共11页 Advances in Mathematics(China)
基金 The second author is supported by NSFC(No.11401408) Sichuan Provincial Foundation of China(No.14ZA0034) Sichuan Normal University Key Project Foundation(No.13ZDL06)
关键词 有限域 正规基 对偶基 迹映射 finite field normal basis dual basis trace mapping
  • 相关文献

同被引文献22

  • 1廖群英,孙琦.有限域上最优正规基的乘法表[J].数学学报(中文版),2005,48(5):947-954. 被引量:8
  • 2田甜,戚文峰.有限域上互反本原正规元的存在性[J].数学学报(中文版),2006,49(3):657-668. 被引量:9
  • 3Mullin R, Onyszchuk I, Vanstone S, et al. Optimal bases in GF(p) [ J]. Discrete Applied Math, 1988/1989,22 (2)149 - 161. 被引量:1
  • 4Gao S, Lenstra H Jr. Optimal normal bases[J]. Design,Codes and Cryptography, 1992,2:315 -323. 被引量:1
  • 5Gao S. Normal Bases over Finite Fields [ D ]. Ontario : Waterloo, 1993. 被引量:1
  • 6Wassermann A. Konstruktion yon normal basen[ J]. Bayreuther Mathematische Schriften, 1990,31:155 - 164. 被引量:1
  • 7Christopoulou M, Garefalakis T, Panario D, et al. Gauss periods as constructions of low complexity normal bases [ J ]. Designs, Codes Cryptography,2012,62( 1 ) :43 - 62. 被引量:1
  • 8Menezes A J, Blake I F, Gao X H, et al. Applications of Finite Fields[ M ]. New York:Kluwer Academic Publishers, 1993. 被引量:1
  • 9Liao Q Y. The gaussian normal basis and its trace basis over finite fields[J]. J Numb Theory,2012,132(7) :1507 - 1518. 被引量:1
  • 10Beth T. Generalizing the discrete fourier transform[ J]. Discrete Math, 1985,56:95 - 100. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部