期刊文献+

融合图模型及形态模型的SAR图像中河道提取 被引量:2

Graph Model and River Prior Model based River Extraction in SAR Images
原文传递
导出
摘要 随着各种高性能SAR成像传感器的广泛使用,海量的SAR图像为各种对地表观测提供了更加丰富的研究依据。基于SAR图像,在复杂场景中提出了一种基于图论及河道轮廓模型相融合的河道提取方法。首先考虑到河道轮廓曲线的复杂性,提出一种河道轮廓分段建模的方法,将复杂的曲线河道轮廓形式化近似为规则直线线段的组合,进而分段采用最小外接矩形窗的组合准确地对河道区域进行描述。建立了一种更加适用于河道提取的图像分割规则,实现对河道区域的准确分割。在此基础上,利用河道轮廓特征的先验知识,根据区域最小外接矩形的形态和连通性对河道区域进行识别。实验结果表明:该方法与常用的基于灰度阈值判别的方法相比,不仅能够有效提取出河道区域,提取结果有效覆盖90%以上的真实区域,还能够较好地抑制背景信息,提取结果仅包含约2%的背景区域。 In recent years,as various high-quality SAR imaging devices are widely used,mass SAR image data provides us with abundant evidence for analyses.Given the SAR images,this paper proposes a novel river extraction method which fuses the graph model and the river prior model.First,taking the complexity of the river contour into consideration,a regionalized model establishment method is proposed and a series of minimum bounding rectangles are combined to simulate the complicated river contour.Further,the image is segmented by a new regulation which is adaptive to the task of river extraction.Then,the river contour prior is utilized for river region recognition,removing the background noise.Experimental results demonstrate that in contrast to the traditional gray threshold based image segmentation method,the proposed method not only has the ability to accurately extract the river region and the extracted region cover the real river region with more than 90 percent,but also be superior to the counterpart in the performance of background noise removal and only less than 2percent of the background are left in the extracted region.
出处 《遥感技术与应用》 CSCD 北大核心 2015年第2期337-344,375,共9页 Remote Sensing Technology and Application
关键词 SAR图像 河道提取 图模型 河道先验模型 SAR image River channel extraction Graph model Morphology model
  • 相关文献

参考文献13

  • 1Gasull A,Fabregas X,Jimenez J,et al.Oil Spills Detection in SAR Images Using Mathematical Morphology. 11th European Signal Processing Conference . 2002 被引量:1
  • 2Tison C,Pourthie N,Souyris J C.Target Recognition in SAR Images with Support Vector Machines. IEEE International Geoscience and Remote Sensing Symposium . 2007 被引量:1
  • 3Han C M,Guo H D,Shao Y,Liao J J.A method to segment SAR images based on histogram. Proceedings of the-2005IEEE International Geoscience and Remote Sensing Symposium . 2005 被引量:1
  • 4Sun Y R.Hierarchical Object-based Visual Attention for Machine Vision. . 2003 被引量:1
  • 5Ibrahim, Haidi,Pik Kong, Nicholas Sia.Image sharpening using sub-regions histogram equalization. IEEE Transactions on Consumer Electronics . 2009 被引量:1
  • 6Zhang F,Shao Y,Zhang X,et al.Building L-Shape Footprint Extraction from High Resolution SAR Image. 2011Joint:IEEE Urban Remote Sensing Event (JURSE) . 2011 被引量:1
  • 7Guofeng Sheng,Wen Yang,Xinping Deng.Coastline Detection in Synthetic Aperture Radar (SAR) Images by Integrating Watershed Transformation and Controllable Gradient Vector Flow (GVF) Snake Model. IEEE Journal of Oceanic Engineering . 2012 被引量:2
  • 8Otsu N.A threshold selection method from gray-level histograms. Automatica . 1975 被引量:4
  • 9赵久奋,任德新,赵玖玲,闫肃.相干斑噪声抑制技术研究[J].仪器仪表学报,2006,27(z2):1413-1416. 被引量:8
  • 10郑玮,康戈文,陈武凡,刘强.一种无监督的遥感图像分割新算法研究[J].仪器仪表学报,2009,30(1):213-218. 被引量:7

二级参考文献37

共引文献45

同被引文献17

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部