期刊文献+

基于高斯差分模型的雪地扰动痕迹遥感识别 被引量:4

Recognition of Activity Tracks in the Snow with Remote Sensing based on Difference of Gaussian Filter
原文传递
导出
摘要 雪面上人或动物的活动信息涉及冬季动物迁移追踪、人员活动轨迹检测、安全防卫等各领域应用,利用遥感技术监测人或动物的活动痕迹可以及时掌握动物的迁移情况、江上人员活动范围等信息,进而可为相应的管理决策提供依据。利用高分辨率遥感技术,通过图像滤波等增强处理,可以识别冰雪覆盖区域经人或动物活动后产生的微弱线状扰动痕迹,为后续分析提供帮助。提出了利用高斯差分滤波器(DoG)进行冬季冰雪覆盖区域扰动痕迹识别的监测方法。通过对吉林省龙井市结冰江面上活动痕迹的实验表明,当σ取1.5时,DoG带通滤波频率与人员过江痕迹频率一致,对痕迹增强效果最明显,此时的滤波器为最佳滤波器,痕迹总体提取精度达到83.67%,优于传统的Laplacian算子、Sobel算子和Prewitt算子滤波方法。说明通过DoG滤波器处理,能够有效地突出雪面上人或动物的活动痕迹,可为进一步识别人或动物活动类型、追踪路线以及相关部门的安全巡逻提供服务。 Human or animal activity information on snow relates to applications in various fields animal tracking such as,in winter,animal migration tracking,public safety and defense,etc.Remote sensing technologies can play key roles in monitoring the tracks of human or animal activity traces through image enhancement,e.g.filter techniques with very high spatial resolution images,especially linear disturbance traces from human or animal activities in snow-covered area,and grasp the animal migration,human activities on the frozen river and other information timely to further assist in decision-making.In this paper the principle and characteristics of the Difference of Gaussian filter(DoG)were proposed to identify linear disturbance traces in the snow,and experiments showed that the accuracy of traces extraction reached 83.67%with an adaptive filter(σ=1.5).The results were more reliable and effective than that from laplacian,sobel and prewitt operators.DoG filter is more suitable for human activity traces identification on the frozen river,and will play a key role in further services for recognizing human or animal activity type,trace route,as well as security patrols of relevant departments.
出处 《遥感技术与应用》 CSCD 北大核心 2015年第1期140-147,共8页 Remote Sensing Technology and Application
基金 高分辨率对地观测系统重大专项(01-Y30A03-9001-12/13)
关键词 高分辨率 遥感 高斯差分滤波器 雪地痕迹 目标识别 High resolution Remote sensing Difference of Gaussian Filter Snow tracks Target recognition
  • 相关文献

参考文献14

  • 1Becker E F,Spindler M A,Osborne T O.A Population Estimator based on Network Sampling of Tracks in the Snow. Journal of Wildlife Management . 1998 被引量:1
  • 2孙志群..基于多源遥感影像的雪盖及雪表面温度反演[D].新疆大学,2012:
  • 3游磊,杨丹,张小洪.一种新的基于DoG的立体匹配算法[J].重庆工学院学报(自然科学版),2009,23(1):122-126. 被引量:2
  • 4Marr D.Vision:A Computational Investigation into the Human Representation and Processing of Visual Information. . 2010 被引量:1
  • 5Rodieck R W,Stone J.Analysis of receptive fields of cat retinal ganglion cells. Journal de Neuroradiologie . 1965 被引量:1
  • 6刘彬,严京旗,施鹏飞.高斯差分的AdaBoost车牌定位方法[J].智能系统学报,2010,5(6):471-475. 被引量:3
  • 7Lathi B P.Signal Processing and Linear Systems. . 2009 被引量:1
  • 8Rafael C G,Richard E W.Digital Image Processing. . 2011 被引量:1
  • 9D. Marr,E. Hildre.Theory of Edge Detection. Proceedings of the Royal Society B Biological Sciences . 1980 被引量:1
  • 10许景波..高斯滤波器逼近理论与应用研究[D].哈尔滨工业大学,2007:

二级参考文献17

  • 1张光年,杨俭华,王光毓,张志广,林书煌.两种GC感受野模型的空间传输特性研究[J].首都师范大学学报(自然科学版),1997,18(S1):20-24. 被引量:3
  • 2郭龙源,夏永泉,杨静宇.基于视差梯度的快速区域匹配方法[J].计算机科学,2007,34(4):239-240. 被引量:10
  • 3盛曦,吴炜,杨晓敏,罗代升,华骅,罗鑫.一种基于Adaboost的车牌定位算法[J].四川大学学报(自然科学版),2007,44(3):535-539. 被引量:9
  • 4HONGLIANG B,CHANGPING L.A hybrid licenseplate extraction method based on edge statistics and morphology[C]//ICPR.[S.l.],2004:831-834. 被引量:1
  • 5LLORENS D,MARZAL A,PALAZON V,et al.Car license plates extraction and recognition based on connected components analysis and HMM decoding[C]// New York:Springer-Verlag,2005,3522:571-578. 被引量:1
  • 6BROUMANDNIA A,FATHY M.Application of pattern recognition for Farsi license plate recognition[C]//GVIP.Cairo,Egypt,2005:623-627. 被引量:1
  • 7DLAGNEKOV L.License plate detection using AdaBoost[D].San Diego,USA:University of California,2004. 被引量:1
  • 8LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 9FREUND Y,SCHAPIRE R E.A decision-theoretic generalization of on-line learning and an application to boosting[C]//Computational Learning Theory:Eurocolt '95.[S.l.],1995:23-37. 被引量:1
  • 10VIOLA P,JONES M.Rapid object detection using a boosted cascade of simple features[C]// Conference on Computer Vision and Pattern Recognition.Kauai,USA:IEEE Press,2001:511-518. 被引量:1

共引文献44

同被引文献60

引证文献4

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部