摘要
Wire electric discharge machining(WEDM)process is used for precision manufacturing.The accuracy of machining is function of various parameters like current,voltage,wire speed,gap between wire and work piece,wire oscillation,work material,wire material,etc.Once the process parameters are selected,it is important that the wire vibrations are less to obtain a good surface finish.Due to the importance of wire vibration in obtaining the surface finish,it is necessary to study the wire vibration.This paper discusses different models of wire vibration presented in the literature and simulates a closed form solution of wire vibration using MATLAB.The transverse vibration of wire is analysed as forced vibration of moving wire with excitation due to the sparks during machining.The resulting partial differential equation is solved by using finite difference method and vibration is also simulated in the finite element package‘ANSYS’.The wire behaviour is investigated under different operating conditions and results of the two methods are
Wire electric discharge machining(WEDM)process is used for precision manufacturing.The accuracy of machining is function of various parameters like current,voltage,wire speed,gap between wire and work piece,wire oscillation,work material,wire material,etc.Once the process parameters are selected,it is important that the wire vibrations are less to obtain a good surface finish.Due to the importance of wire vibration in obtaining the surface finish,it is necessary to study the wire vibration.This paper discusses different models of wire vibration presented in the literature and simulates a closed form solution of wire vibration using MATLAB.The transverse vibration of wire is analysed as forced vibration of moving wire with excitation due to the sparks during machining.The resulting partial differential equation is solved by using finite difference method and vibration is also simulated in the finite element package‘ANSYS’.The wire behaviour is investigated under different operating conditions and results of the two methods are compared
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2013年第S1期208-213,共6页
Chinese Journal of Scientific Instrument