摘要
采用高温固相法合成了Mn2+单掺杂、Mn2+,Ga3+(Ho3+)共掺杂以及Mn2+,Ga3+,Ho3+三掺杂的γ-Zn3(PO4)2。在Mn2+单掺杂的样品中,发射峰位于620nm,该样品在紫外光照射样品后,发现存在红色余辉,余辉中心与荧光中心相同。当Mn2+,Ga3+(Ho3+)共掺杂时,样品同时存在峰值位于620nm的红光发射和峰值位于507nm的绿光发射,紫外光照射样品后,样品存在红色余辉及绿色余辉。Ga3+和Ho3+在基质中自身是不发光,作为共掺杂离子,不仅可以起到调节发光中心的作用,还形成了新的深度适合的陷阱,使得绿色余辉及红色余辉性能有了很大的提高。掺杂双陷阱离子Ga3+和Ho3+,样品余辉性能最佳。
In γ-Zn3(PO4)2 : Mn2+ phosphors there’s only one emission band centered at 620 nm. It also gives the red afterglow centered at 620 nm, which coincide with the emitting centers. While it is observed two emission bands in γ-Zn3(PO4)2 : Mn2+ , Ga3+/Ho3+ , which are respectively centered at 507 nm and 620 nm. The afterglow peaks are consistent with the emitting centers. The samples with Ga3+(Ho3+) singly doped have no emission. The role of Ga3+(Ho3+) is to adjust the distribution of Mn2+ ions in tetrahedral and octahedral lattice, and to introduce the new electron traps to enhance the phosphorescent characters. When Ga3+ and Ho3+ are co-doped in the host as the electron traps, the afterglow properties are the best.
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2013年第S1期222-225,共4页
Rare Metal Materials and Engineering
基金
国家自然科学基金青年基金资助(11204027)
东北大学基本科研业务费资助(N110423001
N110823001)
河北省自然科学基金(A2010001379)