摘要
本文研究下列常微分方程: (r(t)x′(t))′+h(t,x(t),x′(t))+(q_1(t)+q_2(t)]x(t)=0.(A)的极限园型,得到的定理推广和发展了文[3]的主要结果。
In this paper, the second order ordinary differential equations:
(r(t)(t))'+h(t, x(t), (t))+[q_1(t)+q_2(t)]x(t)=0, (A)
is considered. The obtained theorems guarantee all the solutions of (A) which are limit circle classfications and generalize the main result in [3].
出处
《广东工业大学学报》
CAS
1991年第2期11-22,共12页
Journal of Guangdong University of Technology
关键词
二阶常微分方程
极限园型
拉格朗日稳定
second order ordinary differential equations, limit circle, lagrange stability.