期刊文献+

多圆柱区域边界上的多复变函数是区域内多元解析函数边界值的充要条件 被引量:2

NECESSARY AND SUFFICIENT CONDITON OF A COMPLEXVALUED FUNCTION IN THE BOUNDARY OF A POLYDISC AS THE BOUNDARY VALUE OF SOME ANALYTIC FUNCTION OF SEVERAL COMPLEX VARIABLES IN THE POLYDISC
下载PDF
导出
摘要 本文证明了复C^n空间中的多圆柱区域D=D_i边界S上定义的一个复值函数φ(z)是D内的某个n元解析函数的边界值的充要条件.作为这个条件的一个直接应用,获得了C^2空间中双圆柱区域的特征边界上的复值函数定义的柯西型积分是柯西积分的充要条件. This paper discusses the following problem:under what conditions a complex-valued function φ(z) defined on S , the boundary surface of a polydise D =,are the boundary value of some analytic functn of several complex variables in D , then obtains the necessary and sufficient condition; φ(z) is analytic with respect Z_a(a≠k) on S_k(S_k= D_k×D_i) . By applying the condition gets the necessary and sufficient condition that a Cauchy tape integral in the bicylinder of the complex space C^2 is a Cauchy integral.
作者 杨丕文
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 1991年第4期32-40,共9页 Journal of Sichuan Normal University(Natural Science)
关键词 多复变函数论 边界值 多圆柱 function theory of several complex variables,boundary value problem,polydisc.
  • 相关文献

参考文献1

  • 1Francesco Severi. La geometria delle funzioni analitiche di più variabili ed i teoremi di esistenza e di unicità ad esse relativi[J] 1937,Annali di Matematica Pura ed Applicata, Series 4(1):221~261 被引量:1

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部