摘要
本文在[1]、[2]的基础上,对s≥5时,s-3s+4,s^2-3s+3,s^2-3s+2以及s^2-3s+1到s^2一4s+7这一区段内的本原指标缺数的情形进行了讨论,得到了明确的结论。同时,又对[1]中的一些结论重新给出了较为简洁的证明。
Ab^ract The present paper is mainly devoted to the discussion of the problem Whether or not s^2-3s+4,s^2- 3s+3,s^2-3s+2,s^2-3s+1 and s^2-4s+7 are missing number in the primitive index ,When s≥5 The main resillts ameng others are as follow. Theorem 1. Lev D be primituve graph ,K be an arbitrarily given positive integer. If r(D)≤ K≤t(D). then there exists a vertex i of D such that the ergodic index r_s=/k. Theorem 2 Let D be a primitive graph with s vertices and the length of the minimal cycle of D is l. the t(D)≤s+l(s-2). Corollary 1. For all graph D of order s. the upper bound of primitive index is s^2-2s+2 which is also supremum. Corollary 2. s^2-2s……,s^2-3s+5 are all missing number in the primitive index (s≥5)
出处
《山西师范大学学报(自然科学版)》
1991年第1期12-16,共5页
Journal of Shanxi Normal University(Natural Science Edition)
关键词
本原图
本原矩阵
本原指标
本原缺数
遍历指数
primitive gph
primitve metrix
primitive index
ergodie index
missing numbenin the puimitive index