期刊文献+

A GLOBALLY CONVERGENT ALGORITHM FOR THE EUCLIDEAN MULTIPLICITY LOCATION PROBLEM

A GLOBALLY CONVERGENT ALGORITHM FOR THE EUCLIDEAN MULTIPLICITY LOCATION PROBLEM
原文传递
导出
摘要 The Euclidean single facility location problem (ESFL) and the Euclidean multiplicity lo-cation problem (EMFL) are two special nonsmooth convex programming problems which haveattracted a largr literature. For the ESFL problem. there are algorithms which converge bothglobally and quadratically For the EMFL problem, there are some quadratically convergentalgorithms. but for global convergencel they all need nontrivial assumptions on the problem.In this paper, we present an algorithm for EMFL. With no assumption on the problem, it isproved that from any initial point, this algorithm generates a sequence of points which convergesto the closed convex set of optimal solutions of EMFL. The Euclidean single facility location problem (ESFL) and the Euclidean multiplicity lo-cation problem (EMFL) are two special nonsmooth convex programming problems which haveattracted a largr literature. For the ESFL problem. there are algorithms which converge bothglobally and quadratically For the EMFL problem, there are some quadratically convergentalgorithms. but for global convergencel they all need nontrivial assumptions on the problem.In this paper, we present an algorithm for EMFL. With no assumption on the problem, it isproved that from any initial point, this algorithm generates a sequence of points which convergesto the closed convex set of optimal solutions of EMFL.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1992年第4期357-366,共10页 应用数学学报(英文版)
基金 This research is supported in part by the Air Force Office of Scientific Research Grant AFOSR-87-0127, the National Science Foundation Grant DCR-8420935 and University of Minnesota Graduate School Doctoral Dissertation Fellowship awarded to G.L. Xue
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部