摘要
常用的抽屉原则有下面两条: 抽屉原则Ⅰ:若多于n个元素按任一确定的方式分成n个集合,则必定有一个集合中含有两个或两个以上的元素。抽屉原则Ⅱ:把m个元素分成n个集合(m】n),①当n|m时,至少有一集合中有m/n个元素;②当n(?)m时,至少有一集合中有[m/n]+1个元素,其中[m/n]表示不超过m/n的最大整数。它的正确性不难用反证法得到证明。下面举例说明解题中构造抽屉的常用方法: (一) 划分图形设计抽屉一般来说,对于平几、立几等几何图形。
出处
《数学教学》
北大核心
1992年第3期31-33,共3页