期刊文献+

巧用辅助圆解竞赛题

下载PDF
导出
摘要 我们知道,不在同一条直线上的三点确定一个圆,然而人们往往忽视三点共圆问题。偏重于四点共圆,事实上,四点共圆是特殊的,有较强条件的,而三点共圆却是普遍存在,条件很弱的,只要有三角形的地方便有三点共圆,在几何证题中,若能恰当地引入辅助圆(三点圆)充分利用圆的性质,常常可使问题化难为易,证法别具一格。例1,△ABC中,AD为∠BAC的内角平分线,则AB/AC=DB/DC 证明不妨设AB≥AC,作△ADC的外接圆交AB于E,连ED则∵∠1=∠2∴ED=DC,△ABC∽△DBE∴AB/AC=BD/ED=BD/DC这比常规证法简洁,新颖。
作者 蒋玉清
机构地区 南昌三中
出处 《数学教学通讯(教师阅读)》 1992年第4期39-40,共2页
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部