摘要
Comparing with ordinary ploycrystalline materials sized to μm grade,the slip morphology of the coarse grained polycrystalline pure Al is characterized by:(1)several slip domains occur in a grain,and in same domain,several slip systems operate at same time or one after another intensely,a beautiful and neat slip pattern is forming on the specimen surface;(2)for high Σ-value coincident and random grain boundaries,the grain boundary affecting zone (GBAZ),bout 50—120μm wide,is favourable site to form intergranular crack at early fa- tigue life easily,and migration or slide of the boundaries were often observed.While low Σ-value near-coincident grain boundaries show a higher degree of slip continuity and strain compatibility than high Σ-value ones.Intergranular crack is not easily nucleated at low Σ-value near-coincident boundaries;and(3)due to suppression of grain boundary slip at triple grain boundary node,the high Σ-value and random grain boundary among the three boundaries of tricrystal crack easily during cyclic deformation.
Comparing with ordinary ploycrystalline materials sized to μm grade,the slip morphology of the coarse grained polycrystalline pure Al is characterized by:(1)several slip domains occur in a grain,and in same domain,several slip systems operate at same time or one after another intensely,a beautiful and neat slip pattern is forming on the specimen surface;(2)for high Σ-value coincident and random grain boundaries,the grain boundary affecting zone (GBAZ),bout 50—120μm wide,is favourable site to form intergranular crack at early fa- tigue life easily,and migration or slide of the boundaries were often observed.While low Σ-value near-coincident grain boundaries show a higher degree of slip continuity and strain compatibility than high Σ-value ones.Intergranular crack is not easily nucleated at low Σ-value near-coincident boundaries;and(3)due to suppression of grain boundary slip at triple grain boundary node,the high Σ-value and random grain boundary among the three boundaries of tricrystal crack easily during cyclic deformation.