摘要
众所周知C空间中利用样条的分段共单调逼近已有Jackson型估计:倘若f∈C ̄k[0,1]而且是分段单调的,则存在S∈ψ(j,Δ_n),0≤k≤j-1,与f共单调,而且‖f-s‖≤Cδ ̄Kω(f ̄ω,δ),其中S∈ψ(j,Δ_n)={S:S∈C ̄(j-2)[0,1],而且当x∈[t_(j-1),t_j]时,S为j-1次多项式}Δ_n:0=t_1<t_2<t_n=1,δ=max(t_j-t_(j-1)),C=C(j,r)为常数,r为单调性改变数。本文我们考察,缺括值样条的分段共单调逼说得到,L_p(1≤p<+∞)中的Jackson型估计。
On biaswise comonotone by spline in C-space. It's well known holdingJackson-type's estimation: If f∈C ̄k[0,1] is a piecewise monotone function, Then there is S∈ψ(j, Δ_n), 0≤k≤j-1. Comonotone with f. Where S∈ψ(j, Δ_n)={S: S∈C ̄(j-2)[0, 1], When x∈[t_(j-1), t_j] S being a polynomial of j-1 degree} Δ_n, 0=t_1<t_2<t_n=1, δ=max(t_j-t_(j-1))C=c(j,r)=Const. r indicating the monotone changing number。ω(f, h)=sup ‖Δ_tf(·)‖Here We conside On poecewise ComonotoneApproximation by deficient spline In Lp-space (1≤p<+∞),and achive the J-type's estima-tion.
出处
《云南民族大学学报(自然科学版)》
CAS
1994年第2期1-3,共3页
Journal of Yunnan Minzu University:Natural Sciences Edition