期刊文献+

PIECEWISE CONTINUOUS SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS IN THE PLANE 被引量:1

PIECEWISE CONTINUOUS SOLUTIONS OF NONLINEAR ELLIPTIC EQUATIONS IN THE PLANE
下载PDF
导出
摘要 The Riemann boundary value problem is solved for the nonlinear elliptic equation in the plane W(z) = H(z, W, W(z)) + f(z,W). The function H is Lipschitz continuous with respect to the last two variables, with the Lipschitz constant for the last variable being strictly less than one (ellipticity condition). While the function f satisfies a natual growth condition with sigma > 0. \f(z,W)\ less-than-or-equal-to F(z)\W\sigma. The Riemann boundary value problem is solved for the nonlinear elliptic equation in the plane W(z) = H(z, W, W(z)) + f(z,W). The function H is Lipschitz continuous with respect to the last two variables, with the Lipschitz constant for the last variable being strictly less than one (ellipticity condition). While the function f satisfies a natual growth condition with sigma > 0. \f(z,W)\ less-than-or-equal-to F(z)\W\sigma.
作者 戴道清
出处 《Acta Mathematica Scientia》 SCIE CSCD 1994年第4期384-392,共9页 数学物理学报(B辑英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部