期刊文献+

COMPACTIFICATIONS OF BANACH SPACES AND CONSTRUCTION OF DIFFUSION PROCESSES

COMPACTIFICATIONS OF BANACH SPACES AND CONSTRUCTION OF DIFFUSION PROCESSES
原文传递
导出
摘要 Let E be a separable Banach space and μ be a probability measure on E. We consider Dirichlet forms εon L2(E,m).A special compactification MГ of E is studied in order to give a simple sufficient condition which ensures that the complement MГ-E has zero ε-capacity.As an application we prove that the classical Dirichlet forms introduced in Albeverio-Rockner[1]satisfy this sufficient condition. Let E be a separable Banach space and μ be a probability measure on E. We consider Dirichlet forms εon L2(E,m).A special compactification MГ of E is studied in order to give a simple sufficient condition which ensures that the complement MГ-E has zero ε-capacity.As an application we prove that the classical Dirichlet forms introduced in Albeverio-Rockner[1]satisfy this sufficient condition.
作者 宋士奇
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1994年第3期225-226,227228+229-2,共7页 应用数学学报(英文版)
关键词 Banach space compactification Dirichlet form caparity diffusion process Banach space,compactification,Dirichlet form, caparity,diffusion process
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部