期刊文献+

EXISTENCE OF WEAK SOLUTIONS OF 2-D EULER EQUATIONS WITH INITIAL VORTICITY ω0∈L(logL~+)~α(α>1/2)

EXISTENCE OF WEAK SOLUTIONS OF 2-D EULER EQUATIONS WITH INITIAL VORTICITY ω0 ∈L(logL ̄+) ̄α(α>1/2)
原文传递
导出
摘要 EXISTENCEOFWEAKSOLUTIONSOF2-DEULEREQUATIONSWITHINITIALVORTICITYω0∈L(logL~+)~α(α>1/2)¥WUYonghui(InstituteofSystemsScience,Acade... In this paper we obtain the existence of global in the weak solution of 2-D inviscid Euler equations with initial vorticity ω0 ∈L(log L)α ∩ L1 (α> i/2) which is of the Zygmund class and contains any space LP ∩ L1 (p>1). At the same time we correct the remark of Professor Chae who claims that ω0 ∈L(log L) is the critical case. Moreover, a counter-example shows that not all approximating solutions of the Euler equations whose vorticities contained in L(log L)α∩ L1 (α< 1/2) tend to a solution of the Euler equation,and in this sense our result is optimistical. The solution is obtained by approximating the Euler equations by Navier-Stokes equations with the same initial data and then making the viscosity vanish.
出处 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 1995年第3期234-239,共6页
关键词 EXISTENCE EULER EQUATIONS Zygmund class N-function. Existence Euler equations Zygmund class N-function.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部