摘要
在该文中.研究下面的带柯西核的非线性奇异积分微分方程的解这里Γ是简单的李雅普诺夫闭路,u(t)是应当确定的未知函数U(t)={u(t),u'(t).........u(n)(t)},uj0是某些实数或复数.(1)型的非线性奇异积分微分方程用插入法或拓扑法在[1]-[5]的论文中已被研究.在[6].[7]的论文中方程(1)的解用李雅鲁诺夫的分析方法来研究.
In this paper ,it is investigated the following with Cauchy's kernel Where Γ is a simple Liapunov's closed path, u (t) is a nonknown function u (t) ={ u (t). U (t),..., u(n) (t)}, u are some real or complex number. Ref.[1]-[s] applied the interpolation and topological method for the equation (1). By using the Liapunov's method,Ref、 [6],[7],studied the solution of equation (1).
出处
《数学物理学报(A辑)》
CSCD
北大核心
1997年第S1期83-89,共7页
Acta Mathematica Scientia
关键词
非线性奇异积分
微分方程的解
解的挺拓
nonlinear singular integral. solution of differential equation, extension of solution