摘要
Cis-acting elements containing CCAAT core sequence are located in 5' upstream regions of numerous eu-karyotic genes. CCAAT-binding factors interact with these cis-acting elements as heteromeric complex and therefore control the gene transcription. CCAAT binding factors contain at least three subunits and each subunit alone cannot bind to CCAAT box. The cloning of a rice cDNA called RAPB which homologizes to yeast HAP2 (one of the subunits in CCAAT-binding factors) using yeast one-hybrid system and functional complementation approaches is reported. The analytic results indicate that the deduced amino acid sequence in the C terminal of RAPE also contains the functional domain of 60 amino acids highly homologous with yeast HAP2, whereas the deduced amino acids in N terminal region differs significantly, and no GIn-rich region is found in the RAPB protein as in HAP2. The Southern blotting analysis demonstrates that only one copy of RAPB gene exists in rice genome.
Cis-acting elements containing CCAAT core sequence are located in 5’ upstream regions of numerous eukaryotic genes. CCAAT-binding factors interact with these cis-acting elements as heteromeric complex and therefore control the gene transcription. CCAAT binding factors contain at least three subunits and each subunit alone cannot bind to CCAAT box. The cloning of a rice cDNA called RAPB which homologizes to yeast HAP2 (one of the subunits in CCAAT-binding factors) using yeast one-hybrid system and functional complementation approaches is reported. The analytic results indicate that the deduced amino acid sequence in the C terminal of RAPB also contains the functional domain of 60 amino acids highly homologous with yeast HAP2, whereas the deduced amino acids in N terminal region differs significantly, and no Gln-rich region is found in the RAPB protein as in HAP2. The Southern blotting analysis demonstrates that only one copy of RAPB gene exists in rice genome.