期刊文献+

GENERAL BLACK-SCHOLES MODEL OF SECURITY VALUATION 被引量:6

GENERAL BLACK-SCHOLES MODEL OF SECURITY VALUATION
下载PDF
导出
摘要 This paper studies the multi-dimensional Black-Scholes model of security valnation. The extension of the Black-Scholes model implies; the partial differential equation derived from an absence of arbitrage which the authors solve by using the Feynmeu-Kac Formula. Then they compute its special example by solving the multi-variable partial differential equation. This paper studies the multi-dimensional Black-Scholes model of security valnation. The extension of the Black-Scholes model implies; the partial differential equation derived from an absence of arbitrage which the authors solve by using the Feynmeu-Kac Formula. Then they compute its special example by solving the multi-variable partial differential equation.
出处 《Acta Mathematica Scientia》 SCIE CSCD 1999年第3期279-288,共10页 数学物理学报(B辑英文版)
关键词 Black-Scholes model stochastic differential equation partial differential equation Cauchy problem Black-Scholes model stochastic differential equation partial differential equation Cauchy problem
  • 相关文献

同被引文献22

  • 1薛红.具有随机寿命的多维Black-Scholes定价模型[J].系统工程理论与实践,2004,24(8):44-48. 被引量:13
  • 2梅雨,何穗.具有随机寿命的欧式幂期权的定价[J].统计与决策,2007,23(4):54-55. 被引量:3
  • 3Black F, Scholes M. The pricing of options and corporate liabilities[ J]. Journal of Political Economy, 1973,81:133 - 155. 被引量:1
  • 4Jennergren L P, Naslund B. A class of option with stochastic lives and extension of the Black-Scholes formula[J]. European Journal of Operational Research, 1996,91:229 - 234. 被引量:1
  • 5BLACK F,SCHOLES M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81:133-155. 被引量:1
  • 6MERTON R C.Theory of rational option pricing[J].Bell J of Econ.and Management Sci., 1973,(4):141-183. 被引量:1
  • 7LAMBERTON D,LAPEYRE B.Introduction to sto-chastic calculus applied to finance[M].Chapman & Hall,1996. 被引量:1
  • 8YAN Jia-an.Introduction to martingale methods in option pricing[R].Hongkong:Liu Bei-ju Centre for Mathematical Sciences,1998. 被引量:1
  • 9Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy,1973;81:133-135. 被引量:1
  • 10Hull J. Options, Futures, and Other Derivative Securities[M], 3rd ed. Englewood Cliffs (New Jersey):Prentice-Hall, 1996. 被引量:1

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部