期刊文献+

连续变量函数全局优化算法—列队竞争算法 被引量:2

A New Algorithm for Continuous Variable Global Optimization Line up Competition Algorithm
下载PDF
导出
摘要 提出了一种全局优化搜索新算法——列队竞争算法.算法在模拟进化过程中,始终保持着独立并行进化的家族,通过家族内部的生存竞争和家族间的地位竞争这两种不同的竞争方式,使群体快速进化到最优或接近最优的区域.根据家族的目标函数值大小排成列队,并按家族在列队中的地位不同获得不同的竞争推动力,使得各个家族在列队中的位置发生动态的变化,从而使得局部搜索与全局搜索达到均衡.数值计算结果表明。 A new global optimization search algorithm, Line up Competition Algorithm(LCA), is proposed There always exist independent and parallel evolutionary families in the course of simulating evolution, Population can evolve rapidly to optimum or near optimum region by using both the struggle for existence inside family and the position competition among families .Families are ranged a line up based on their objective function value, and gain corresponding competition driving force in the light of their position in the line up. That makes the position of every family in line up produce dynamic change , thus reaching the uniform of local and global search The solution of a set of typical test functions with proposed algorithm indicates that the algorithm is able to find rapidly global optimal solution in complex search space.
出处 《应用基础与工程科学学报》 EI CSCD 1999年第2期215-221,共7页 Journal of Basic Science and Engineering
关键词 全局优化 列队竞争算法 进化算法 Global optimization, line up competition algorithm, evolutionary algorithm
  • 相关文献

参考文献2

共引文献8

同被引文献35

  • 1魏金岭,霍超,孟濬,刘平.运用变异算子随机搜索求解全局优化问题[J].浙江大学学报(工学版),2001,35(6):633-639. 被引量:6
  • 2李振涛,张国立,王淑玲.人口迁移神经网络在电力系统短期负荷预测中的应用[J].华东电力,2007,35(7):17-20. 被引量:4
  • 3ZHANG Wei-wei, LUO Qi-fang, ZHOU Yong-quan. A method for training RBF neural networks based on population migration algorithm [ C ]//Proc of International Conference on Artificial Intelligence and Computational Intelligence. Washington DC : IEEE Computer Society, 2009 : 165-169. 被引量:1
  • 4SU Sheng. Image classification based on particle swarm optimization combined with K-means [ C ]//Proe of International Conference on Test and Measurement. 2009:367-370. 被引量:1
  • 5ZHANG Ji-hui, XU Jun-qin. Evolutionary programming based on uniform design with application to multiobjeetive optimization [ C ]//Proc of the 5th World Congress on Iotelligent Control and Automation. 2004:2298- 2302. 被引量:1
  • 6KHOA T Q D, NAKAGAWA M. Training muhilayer neural network by global chaos optimization algorithms [ C ]//Proc of International Joint Conference on Neural Networks. 2007 : 136-141. 被引量:1
  • 7R Horst,P M Pardalos,N V Thoai.全局优化引论[M].北京:清华大学出版社,2003. 被引量:1
  • 8Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Perth:Proceedings of IEEE International Conference on Neural Networks,1995.1942-1948. 被引量:1
  • 9Demirhan M,zdamar L,et al.FRACTOP:A Geometric Partitio-ning Metaheuristic for Global Optimization[J].Journal of Global Optimization,1999,14:415-436. 被引量:1
  • 10Birbil S I,S C Fang.An Electromagnetism-like Mechanism for Global Optimization[J].Journal of Global Optimization,2003,25:263-282. 被引量:1

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部