期刊文献+

Maturity Control on the Patterns of Hydrocarbon Regeneration from Coal 被引量:6

下载PDF
导出
摘要 Rock-Eval pyrolysis and Py-GC experiments on naturally and artificially matured coal samples were carried out. The results suggest that both depolymerization and defuctionalization exist during the maturation and evolution of coal. The patterns of hydrocarbon regeneration are diverse at different stages of the maturation and evolution. When the vitrinite reflectance (R0) is 0.7%-0.9%, bitumen is the richest in coal while activation energy is the minimum, and the temperature of peak yield is lower than that of primary hydrocarbon generation. However, if reflectance is greater than 0.9%, defunctionalization predominates and the temperature of peak regeneration is shown in lagging compared with the primary hydrocarbon generation. When reflectance is out of the “oil window”, the peak temperature of hydrocarbon regeneration and that of the primary hydrocarbon generation seems to be continuous. Rock-Eval pyrolysis and Py-GC experiments on naturally and artificially matured coal samples were carried out. The results suggest that both depolymerization and defuctionalization exist during the maturation and evolution of coal. The patterns of hydrocarbon regeneration are diverse at different stages of the maturation and evolution. When the vitrinite reflectance (R0) is 0.7%-0.9%, bitumen is the richest in coal while activation energy is the minimum, and the temperature of peak yield is lower than that of primary hydrocarbon generation. However, if reflectance is greater than 0.9%, defunctionalization predominates and the temperature of peak regeneration is shown in lagging compared with the primary hydrocarbon generation. When reflectance is out of the “oil window”, the peak temperature of hydrocarbon regeneration and that of the primary hydrocarbon generation seems to be continuous.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期370-374,共5页 地质学报(英文版)
基金 This project was granted financial support from the China Postdoctoral Science Foundation Chinese National Key Science and Technology Project(96-110-01-02).
  • 相关文献

同被引文献110

引证文献6

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部