摘要
The heat transfer enhancement characteristics of water with polystyrene particles are examined in the present numerical study. The numerical study is conducted in the hydrodynamically fully developed turbulent flows within a circular duct with the wall boundary condition of a constant heat flux. The thermal conductivity of the turbulent flow obtained by the Reynolds analogy is 1000 times as much as the thermal conductivity of water. On the contrary, the enhancement of thermal conductivity caused by water-microparticles suspension is relatively low. Slight enhancements of the local Nusselt number are obtained in the numerical calculations of Newtonian turbulent flows with the micro-convection effects, thus showing large deviations from the experimental data. The numerical results in non-Newtonian flows are in agreement with the experimental data. Thus, the main cause for the enhancement of the heat transfer of the suspension might be not due to the micro-convection effects but to the non-Newtonian
The heat transfer enhancement characteristics of water with polystyrene particles are examined in the present numerical study. The numerical study is conducted in the hydrodynamically fully developed turbulent flows within a circular duct with the wall boundary condition of a constant heat flux. The thermal conductivity of the turbulent flow obtained by the Reynolds analogy is 1000 times as much as the thermal conductivity of water. On the contrary, the enhancement of thermal conductivity caused by water-microparticles suspension is relatively low. Slight enhancements of the local Nusselt number are obtained in the numerical calculations of Newtonian turbulent flows with the micro-convection effects, thus showing large deviations from the experimental data. The numerical results in non-Newtonian flows are in agreement with the experimental data. Thus, the main cause for the enhancement of the heat transfer of the suspension might be not due to the micro-convection effects but to the non-Newtonian effects.