摘要
Traditional Evolutionary Algorithm (EAs) is based on the binary code, real number code, structure code and so on. But these coding strategies have their own advantages and disadvantages for the optimization of functions. In this paper a new Decimal Coding Strategy (DCS), which is convenient for space division and alterable precision, was proposed, and the theory analysis of its implicit parallelism and convergence was also discussed. We also redesign several genetic operators for the decimal code. In order to utilize the historial information of the existing individuals in the process of evolution and avoid repeated exploring, the strategies of space shrinking and precision alterable, are adopted. Finally, the evolutionary algorithm based on decimal coding (DCEAs) was applied to the optimization of functions, the optimization of parameter, mixed-integer nonlinear programming. Comparison with traditional GAs was made and the experimental results show that the performances of DCEAS are better than the tradition GAs.
Traditional Evolutionary Algorithm (EAs) is based on the binary code, real number code, structure code and so on. But these coding strategies have their own advantages and disadvantages for the optimization of functions. In this paper a new Decimal Coding Strategy (DCS), which is convenient for space division and alterable precision, was proposed, and the theory analysis of its implicit parallelism and convergence was also discussed. We also redesign several genetic operators for the decimal code. In order to utilize the historial information of the existing individuals in the process of evolution and avoid repeated exploring, the strategies of space shrinking and precision alterable, are adopted. Finally, the evolutionary algorithm based on decimal coding (DCEAs) was applied to the optimization of functions, the optimization of parameter, mixed-integer nonlinear programming. Comparison with traditional GAs was made and the experimental results show that the performances of DCEAS are better than the tradition GAs.
基金
SupportedbytheNationalNaturalScienceFoundationofChina(No.6 970 30 11)