期刊文献+

EXISTENCE OF WEAK SOLUTIONS FOR A DEGENERATE GENERALIZED BURGERS EQUATION WITH LARGE INITIAL DATA 被引量:4

EXISTENCE OF WEAK SOLUTIONS FOR A DEGENERATE GENERALIZED BURGERS EQUATION WITH LARGE INITIAL DATA
下载PDF
导出
摘要 It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. Meanwhile it is obtained the solution is exponential decay when the initial data has compact support. It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. Meanwhile it is obtained the solution is exponential decay when the initial data has compact support.
作者 张辉
出处 《Acta Mathematica Scientia》 SCIE CSCD 2002年第2期241-248,共8页 数学物理学报(B辑英文版)
关键词 Degenerate generalized Burgers equation EXISTENCE weak solution Degenerate generalized Burgers equation, existence, weak solution
  • 相关文献

参考文献9

  • 1Athanasios E. Tzavaras.Wave interactions and variation estimates for self-similar zero-viscosity limits in systems of conservation laws[J]. Archive for Rational Mechanics and Analysis . 1996 (1) 被引量:1
  • 2Constantine M. Dafermos.Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method[J]. Archive for Rational Mechanics and Analysis . 1973 (1) 被引量:1
  • 3Slemrod M.Resolution of the spherical piston problem for compressible isentropic gas dynamics via a self-similar viscous limit. Proc of the Royal Soc of Edinburgh . 1996 被引量:1
  • 4Scott J F.The long time asymptotics of solution to the generalized Burgers equation. Proceedings of the Royal Society of London . 1981 被引量:1
  • 5Hormander L.Lectures on nonlinear hyperbolic differential equations. . 1997 被引量:1
  • 6Ding Xiaxi,Wang Jinghua.Global solutions for a semilinear parabolic system. Acta Mathematica . 1983 被引量:1
  • 7Hopf E.The partial differential equation ut+uux= μuxx. Communications on Pure and Applied Mathematics . 1950 被引量:1
  • 8Leibovich S,Seebass A R,eds.Nonlinear waves. . 1974 被引量:1
  • 9Sauchder P L.Nonlinear diffusive waves. . 1987 被引量:1

同被引文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部