摘要
The theory of monotone semiflows has been widely applied to functional differential equations (FDEs). The studies on the theory and applications of monotone semiflows for FDEs are very important and interesting. A brief des-cription of our recent works are as follows.By using general monotone semiflow theory, several results of positively invariant sets, monotone solutions and contracting rectangles of retarded functional differential equations(RFDEs) with infinite delay are gained under the assumption of quasimonotonicity; sufficient conditions for the existence, un-iqueness and global attractivity of periodic solutions are also established by combining the theory of monotone semiflows for neutral functional differential equations(NFDEs) and Krasnoselskii's fixed point theorem.
The theory of monotone semiflows has been widely applied to functional differential equations (FDEs). The studies on the theory and applications of monotone semiflows for FDEs are very important and interesting. A brief des-cription of our recent works are as follows.By using general monotone semiflow theory, several results of positively invariant sets, monotone solutions and contracting rectangles of retarded functional differential equations(RFDEs) with infinite delay are gained under the assumption of quasimonotonicity; sufficient conditions for the existence, un-iqueness and global attractivity of periodic solutions are also established by combining the theory of monotone semiflows for neutral functional differential equations(NFDEs) and Krasnoselskii's fixed point theorem.
基金
Project supported by NNSF of China(19971026
10271044) and Scientific Research Fund of Educational Department of Anhui Province.