期刊文献+

Evaluation of dissolved oxygen in water by artificial neural network and sample optimization

Evaluation of dissolved oxygen in water by artificial neural network and sample optimization
下载PDF
导出
摘要 Three important factors influencing directly the dissolved oxygen (DO) of river including the outflow, the water temperature and the pH, were used as input parameters to set up a BP neural network based on Levenberg-Marquant algorithm. The neural network model was proposed to evaluate DO in water. The model contains two parts: firstly, the learning sample is unified; secondly, the neural network is used to train the unified samples to ensure the best node number of hidden layer. The proposed model is applied to assessing the DO concentration of the Yellow River in Lanzhou city. The evaluation result is compared with that by the neural network method and the reported result in Lanzhou city. The comparison result indicates that the performance of the neural network model is practically feasible in the assessment of DO. At the same time, the linear interpolation method can add the number of network's learning sample to improve the prediction precision of the network. Three important factors influencing directly the dissolved oxygen (DO) of river including the outflow, the water temperature and the pH, were used as input parameters to set up a BP neural network based on Levenberg-Marquant algorithm. The neural network model was proposed to evaluate DO in water. The model contains two parts: firstly, the learning sample is unified; secondly, the neural network is used to train the unified samples to ensure the best node number of hidden layer. The proposed model is applied to assessing the DO concentration of the Yellow River in Lanzhou city. The evaluation result is compared with that by the neural network method and the reported result in Lanzhou city. The comparison result indicates that the performance of the neural network model is practically feasible in the assessment of DO. At the same time, the linear interpolation method can add the number of network’s learning sample to improve the prediction precision of the network.
作者 陈丽华 李丽
出处 《Journal of Central South University》 SCIE EI CAS 2008年第S2期416-420,共5页 中南大学学报(英文版)
关键词 dissolved oxygen (DO) BP NEURAL network EVALUATION CONCENTRATION dissolved oxygen (DO) BP neural network evaluation concentration
  • 相关文献

参考文献8

二级参考文献33

共引文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部