期刊文献+

基于子空间的视觉跟踪算法

Visual Tracking Algorithm Research Based on Subspace
下载PDF
导出
摘要 视觉跟踪最大的挑战在于能否建立一种能有效适应目标外观变化的观测模型,这就需要跟踪算法能对不断变化的目标外观模式进行在线学习。提出一种基于综合子空间的观测算法,在贝叶斯估计的前提下,用PCA子空间和正交子空间来描述目标外观。该算法结合了PCA子空间和正交子空间的优点,既能学习到目标的低维描述子空间,又能迅速学习到最新的目标外观变化模式。通过构建跟踪观测模型,并在粒子滤波框架下进行实验。结果表明,该方法能够有效地跟踪目标,性能优于PCA算法,而且其在光照变化,目标转动等外观变化大情况下仍能稳定地跟踪目标。 To build an observing model adapting to the rapidly changing object appearance is the biggest challenge of visual tracking.So the tracking algorithm requires learning the object appearance on line which may vary quickly.An algorithm based on mixed subspace is proposed which colligates PCA subspace and orthogonal subspace together and builds a tracking observation model.The experiment is executed under the framework of particle filtering.The result shows that this kind of algorithm can track the object more effectively than only using PCA subspace,especially under situations of drastically changing appearance such as illumination and object rotation.
出处 《控制工程》 CSCD 北大核心 2009年第S1期101-103,188,共4页 Control Engineering of China
关键词 视觉跟踪 粒子滤波 PCA子空间 正交子空间 visual tracking particle filtering PCA subspace orthogonal subspace
  • 相关文献

参考文献7

  • 1David A. Ross,Jongwoo Lim,Ruei-Sung Lin,Ming-Hsuan Yang.Incremental Learning for Robust Visual Tracking[J]. International Journal of Computer Vision . 2008 (1-3) 被引量:1
  • 2Michael Isard,Andrew Blake.CONDENSATION—Conditional Density Propagation for Visual Tracking[J]. International Journal of Computer Vision . 1998 (1) 被引量:1
  • 3Tipping ME,Bishop CM.Probabilistic principal component analysis. Journal of the Royal Statistical Society Series B Statistical Methodology . 1999 被引量:1
  • 4Ross D A,Lim Jongwoo,Lin Ruei-Sung,et al.Incremental learning for robust visual tracking. International Journal of Computer Vision . 2008 被引量:1
  • 5Lin.R.S,Ross.D,Lim.J.Adaptive Discriminative Generative Model and Its Applications. Proc.Conf.Neural Information Processing System . 2004 被引量:1
  • 6Ho J,Kuang-Chih L,Ming-Hsuan Y. et al.Visual tracking using learned linear subspaces. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 2004 被引量:1
  • 7Isard,M,Blake,A.Condensation-conditional density propagation for visual tracking. International Journal of Computer Vision . 1996 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部