摘要
The microstructure and properties of a series of binary Ti-Nb alloys for dental prostheses with niobium contents ranging from 5% to 20% were investigated. The experimental results indicate that the crystal structure and morphology of Ti-Nb alloys are sensitive to their niobium contents. When Nb content is 5%, the acicular α crystal grain is observed. When Nb content is 10%, the coarse equiaxed crystal grain and the fine, acicular α crystal grain are observed. When Nb content is 15%, only the α equiaxed crystal grain is observed. When the alloy contains 20%Nb, the equiaxed and dendritic α crystal grain are observed. For Ti-Nb alloys, the increase of Nb content modifies the microstructure of Ti-Nb alloys significantly and decreases their compression elastic modulus, in which Ti-20Nb alloy shows the largest compression strength and Ti-5Nb alloy shows the best plasticity. The dry wear resistance of Ti-Nb alloys against Gr15 ball was investigated on CJS111A ball-disk wear instrument. For Ti-Nb alloys, Ti-10Nb alloy shows a smallest steady friction coefficient, Ti-5Nb alloy shows the smallest wear depth and best wear resistance, and Ti-15Nb alloy shows the largest wear depth and worst wear resistance. The phenomenon of furrow cut happens and furrows form during wear tests.
The microstructure and properties of a series of binary Ti-Nb alloys for dental prostheses with niobium contents ranging from 5% to 20% were investigated. The experimental results indicate that the crystal structure and morphology of Ti-Nb alloys are sensitive to their niobium contents. When Nb content is 5%, the acicular α crystal grain is observed. When Nb content is 10%, the coarse equiaxed crystal grain and the fine, acicular α crystal grain are observed. When Nb content is 15%, only the α equiaxed crystal grain is observed. When the alloy contains 20%Nb, the equiaxed and dendritic α crystal grain are observed. For Ti-Nb alloys, the increase of Nb content modifies the microstructure of Ti-Nb alloys significantly and decreases their compression elastic modulus, in which Ti-20Nb alloy shows the largest compression strength and Ti-5Nb alloy shows the best plasticity. The dry wear resistance of Ti-Nb alloys against Gr15 ball was investigated on CJS111A ball-disk wear instrument. For Ti-Nb alloys, Ti-10Nb alloy shows a smallest steady friction coefficient, Ti-5Nb alloy shows the smallest wear depth and best wear resistance, and Ti-15Nb alloy shows the largest wear depth and worst wear resistance. The phenomenon of furrow cut happens and furrows form during wear tests.
出处
《中国有色金属学会会刊:英文版》
CSCD
2009年第S3期639-644,共6页
Transactions of Nonferrous Metals Society of China
基金
Project(20080440850) supported by China Postdoctoral Science Foundation
Project(ZJY0605-02) supported by the Natural Science Foundation of Heilongjiang Province, China