期刊文献+

硅灰对混凝土开裂敏感性的影响 被引量:6

Influence of Silica Fume on Cracking Sensitivity of Concrete
下载PDF
导出
摘要 采用温度应力试验机研究了不同水胶比、不同硅灰掺量及硅灰与粉煤灰混掺对混凝土开裂敏感性的影响,并同纯水泥及常用海工混凝土进行比较。试验结果表明:对于掺硅灰混凝土的开裂敏感性,每一硅灰掺量都存在一个合适的水胶比范围,过高或者过低都会增加开裂敏感性,且硅灰掺量越高相应合适的水胶比越大;同水胶比条件下,随着硅灰掺量的提高,开裂敏感性增加,但在合适的水胶比条件下,与基准混凝土相比,8%以下掺量并不增加混凝土的开裂敏感性;在硅灰混凝土中掺入适量的优质粉煤灰能够降低混凝土的开裂敏感性;与矿粉混掺粉煤灰的海工混凝土相比,硅灰混掺粉煤灰混凝土抗开裂性能与之相当,同时保持早强的优势。 The influence factors,such as water-binder ratio, mixing amount of silica fume and addition of silica fume and fly ash,on cracking sensitivity of reinforced concrete are studied by using temperature-stress test machine.Moreover,the cracking sensitivity of concrete with silica fume is also studied and analyzed by comparing with pure cement concrete and marine concrete with fly ash and slag powder.The results indicate that: in terms of cracking sensitivity of concrete,each silica fume content has a suitable water-binder ratio range.Moreover,the higher the amount of silica fume is,the bigger the corresponding appropriate water-binder ratio.In addition,cracking sensitivity increases with the content of silica fume under the condition of the same water-binder ratio,but it is not higher than that of the corresponding control concrete unless the mixing amount is below 8% and the water-binder ratio is appropriate.And cracking sensitivity decreases and gets improved when fly ash adds in silica fume concrete.Furthermore,compared with common marine concrete with fly ash and slag powder,cracking sensitivity of concrete with silica fume and fly ash is equivalent to that of the marine concrete with slag powder and fly ash under the condition of proper water-binder ratio,but it has the advantages of high early strength.
出处 《施工技术》 CAS 北大核心 2009年第S2期368-371,共4页 Construction Technology
关键词 混凝土 硅灰 温度应力 开裂敏感性 影响 concrete silica fume temperature-stress cracking sensitivity influence
  • 相关文献

参考文献6

二级参考文献22

  • 1[1]P. K. Mehta. Durability-Critical Issues for the Future. Concrete International. July 1997. 被引量:1
  • 2[2]P. K. Mehta. Advancements in Concrete Technology. Concrete International. June 1999. 被引量:1
  • 3[3]P.-C. Aitcin: Cements of yesterday and today: Concrete of tomorrow. Cement and Concrete Research. Sept. 2000. 被引量:1
  • 4[4]R. Springenschmid. Avoidance of Thermal Cracking in Concrete at Early Ages. 1998. 被引量:1
  • 5[5]R. Springenschmid. Thermal Cracking in Concrete at Early Ages. E & FN SPON. 1994. R. W. Burrows, The Visible and Invisible Cracking of Concrete. Monograph of ACI. 1998. 被引量:1
  • 6Edited by R. Springenschmid. RILEM Report 15, Prevention of Thermal Cracking in Concrete at Early ages. E&FN SPON 1998. 被引量:1
  • 7Penev. D and Kawamura. M. A Laboratory Device for Restrained Shrinkage Fracture of Soil-Cement Mixture. Materials and Structure. V.25, 1992, pp. 115 - 120. 被引量:1
  • 8Agnes Nagy, Simulation of Thermal Stress in Reinforced Concrete at Early Ages with a Simplified Model. Materials and Structure. V30,April 1997, pp. 167 - 173. 被引量:1
  • 9Edited by R. Springenschmid etc, Thermal Cracking in Concrete at Early Ages, E&FN SPON, 1994.21 - 35. 被引量:1
  • 10P. C. Aitcin Adam Neville and Paul Acker. Integrated View of Shrinkage Deformation. Concrete International, 1997, Sept. 35 - 40. 被引量:1

共引文献227

同被引文献71

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部