摘要
该文讨论一类线性双层规划:第一层中的目标函数和约束是线性的,第二层是解可以不唯一的带参数的线性规划。利用等价的Kuhn-Tucker条件将线性双层规划转化为单层非线性规划,其全局最优解可以在某个集合的极点上找到。在此基础上给出下层解可以不唯一的线性双层规划问题的一个全局优化算法。
该文讨论一类线性双层规划:第一层中的目标函数和约束是线性的,第二层是解可以不唯一的带参数的线性规划。利用等价的Kuhn-Tucker条件将线性双层规划转化为单层非线性规划,其全局最优解可以在某个集合的极点上找到。在此基础上给出下层解可以不唯一的线性双层规划问题的一个全局优化算法。
出处
《杭州电子科技大学学报(自然科学版)》
2010年第3期91-94,共4页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
杭州电子科技大学科学研究基金(KYF075609013)
关键词
双层规划
全局优化
线性函数
极点
bilevel programming
global convergence
linear function
extreme points