期刊文献+

Asymptotic stability of monostable wavefronts in discrete-time integral recursions

Asymptotic stability of monostable wavefronts in discrete-time integral recursions
原文传递
导出
摘要 The aim of this work is to study the traveling wavefronts in a discrete-time integral recursion with a Gauss kernel in R2.We first establish the existence of traveling wavefronts as well as their precise asymptotic behavior.Then,by employing the comparison principle and upper and lower solutions technique,we prove the asymptotic stability and uniqueness of such monostable wavefronts in the sense of phase shift and circumnutation.We also obtain some similar results in R. The aim of this work is to study the traveling wavefronts in a discrete-time integral recursion with a Gauss kernel in R2.We first establish the existence of traveling wavefronts as well as their precise asymptotic behavior.Then,by employing the comparison principle and upper and lower solutions technique,we prove the asymptotic stability and uniqueness of such monostable wavefronts in the sense of phase shift and circumnutation.We also obtain some similar results in R.
机构地区 Univ Miami Lanzhou Univ
出处 《Science China Mathematics》 SCIE 2010年第5期148-157,共10页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.10871085) US National Science Foundation (Grant Nos.DMS-0412047,DMS-0715772)
关键词 DISCRETE-TIME INTEGRAL RECURSION comparison principle upper and lower solutions MONOSTABLE wave stability discrete-time integral recursion comparison principle upper and lower solutions monostable wave stability
  • 相关文献

参考文献33

  • 1Bingtuan Li,Mark A. Lewis,Hans F. Weinberger.Existence of traveling waves for integral recursions with nonmonotone growth functions[J]. Journal of Mathematical Biology . 2009 (3) 被引量:1
  • 2Zhi-Cheng Wang,Wan-Tong Li,Shigui Ruan.Traveling Fronts in Monostable Equations with Nonlocal Delayed Effects[J]. Journal of Dynamics and Differential Equations . 2008 (3) 被引量:1
  • 3Hans F. Weinberger,Kohkichi Kawasaki,Nanako Shigesada.Spreading speeds of spatially periodic integro-difference models for populations with nonmonotone recruitment functions[J]. Journal of Mathematical Biology . 2008 (3) 被引量:1
  • 4Frithjof Lutscher.Density-dependent dispersal in integrodifference equations[J]. Journal of Mathematical Biology . 2008 (4) 被引量:1
  • 5Hans F. Weinberger.On spreading speeds and traveling waves for growth and migration models in a periodic habitat[J]. Journal of Mathematical Biology . 2002 (6) 被引量:1
  • 6Mark A. Lewis,Bingtuan Li,Hans F. Weinberger.Spreading speed and linear determinacy for two-species competition models[J]. Journal of Mathematical Biology . 2002 (3) 被引量:1
  • 7Hans F. Weinberger,Mark A. Lewis,Bingtuan Li.Analysis of linear determinacy for spread in cooperative models[J]. Journal of Mathematical Biology . 2002 (3) 被引量:1
  • 8M.A. Lewis.Spread rate for a nonlinear stochastic invasion[J]. Journal of Mathematical Biology . 2000 (5) 被引量:1
  • 9Peter W. Bates,Paul C. Fife,Xiaofeng Ren,Xuefeng Wang.Traveling Waves in a Convolution Model for Phase Transitions[J]. Archive for Rational Mechanics and Analysis . 1997 (2) 被引量:1
  • 10Mark Kot.Discrete-time travelling waves: Ecological examples[J]. Journal of Mathematical Biology . 1992 (4) 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部