摘要
为研究短波语音通信下的飞机识别,提出利用2种方式对目标声信号进行分析处理.为实现对语音进行抑制,分别利用全局经验模态分解(EEMD)和经验模态分解(EMD)将信号进行重构,然后根据重构后的目标信号进行Bark域频率感知的小波包分解(BWPD)和高阶累积量(HOC)分解,对目标声信号分别提取了听觉感知的特征和展现信号的物理特性的特征;分别利用EEMD和EMD分解对信号进行重构,然后选择Mel频率倒谱系数和高阶累积量对重构后的信号进行特征提取.对比实验表明:EEMD-BWPD-HOC方法能够抽取出有效的飞机舱内背景声音信号特征,实现语音抑制,并且以较高的识别率识别出4种飞机.
为研究短波语音通信下的飞机识别,提出利用2种方式对目标声信号进行分析处理.为实现对语音进行抑制,分别利用全局经验模态分解(EEMD)和经验模态分解(EMD)将信号进行重构,然后根据重构后的目标信号进行Bark域频率感知的小波包分解(BWPD)和高阶累积量(HOC)分解,对目标声信号分别提取了听觉感知的特征和展现信号的物理特性的特征;分别利用EEMD和EMD分解对信号进行重构,然后选择Mel频率倒谱系数和高阶累积量对重构后的信号进行特征提取.对比实验表明:EEMD-BWPD-HOC方法能够抽取出有效的飞机舱内背景声音信号特征,实现语音抑制,并且以较高的识别率识别出4种飞机.
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2011年第S2期291-294,共4页
Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(60975019)
关键词
全局经验模态分解
听觉感知
飞机识别
短波
小波包
ensemble empirical mode decomposition
auditory perception
aircraft recognition
shortwave
wavelet packet