摘要
要成功地发射一个深空探测器进入目标轨道,相应的运行过程基本上涉及3个阶段:近地停泊轨道运行段、转移轨道的过渡段和进入目标天体的绕飞段。它们各自的运行状态和相应的数学模型有所差别,特别是转移轨道段的运行特征与绕飞段的卫星轨道的典型特征之间的重大差别,在深空探测任务中受到广泛的重视,如平动点利用中的晕(Halo)轨道和引力加速的节能过渡等。然而,就太阳系而言,这些不同轨道之间有一共同的基本性态,那就是都可以用在牛顿万有引力定律制约下的开普勒轨道(或变化的开普勒轨道)来刻画。本文将针对上述不同运行段轨道对应的数学模型、研究方法和结果,结合我们所做的工作进行综述。
Generally,there are three stages to send a deep space exploration spacecraft to its nominal orbit: parking orbit around the earth,transfer orbit and nominal orbit around the targeted celestial body.The operation status in each stage and corresponding mathematical models are different.In particular,the transfer orbit is vastly different from orbits around the targeted celestial body,and studies have been widely made on such differences in deep space exploration,e.g.halo orbit around collinear libration points and energy saving by swing-by.Nevertheless,all orbits in the solar system have a common elementary feature: they all can be described by Keplerian orbits(or variational Keplerian orbits) with Newton's gravitation law.This paper probes into different mathematical models,methods and research results for different orbits in combination with projects we have accomplished over the years.
出处
《飞行器测控学报》
2009年第2期1-8,共8页
Journal of Spacecraft TT&C Technology
基金
国家自然科学基金(10673006)
关键词
深空探测器
二体问题
圆型限制性三体问题
开普勒轨道
平动点
晕轨道
节能过渡
Deep Space Probe
Two-body Problem
Circular Restricted Three-body Problem
Keplerian Orbit
Libration Point
Halo Orbit
Energy Saving Passage