期刊文献+

深空探测器运行轨道的基本性态 被引量:2

Elementary Characteristics of the Orbits of Deep Space Spacecraft
下载PDF
导出
摘要 要成功地发射一个深空探测器进入目标轨道,相应的运行过程基本上涉及3个阶段:近地停泊轨道运行段、转移轨道的过渡段和进入目标天体的绕飞段。它们各自的运行状态和相应的数学模型有所差别,特别是转移轨道段的运行特征与绕飞段的卫星轨道的典型特征之间的重大差别,在深空探测任务中受到广泛的重视,如平动点利用中的晕(Halo)轨道和引力加速的节能过渡等。然而,就太阳系而言,这些不同轨道之间有一共同的基本性态,那就是都可以用在牛顿万有引力定律制约下的开普勒轨道(或变化的开普勒轨道)来刻画。本文将针对上述不同运行段轨道对应的数学模型、研究方法和结果,结合我们所做的工作进行综述。 Generally,there are three stages to send a deep space exploration spacecraft to its nominal orbit: parking orbit around the earth,transfer orbit and nominal orbit around the targeted celestial body.The operation status in each stage and corresponding mathematical models are different.In particular,the transfer orbit is vastly different from orbits around the targeted celestial body,and studies have been widely made on such differences in deep space exploration,e.g.halo orbit around collinear libration points and energy saving by swing-by.Nevertheless,all orbits in the solar system have a common elementary feature: they all can be described by Keplerian orbits(or variational Keplerian orbits) with Newton's gravitation law.This paper probes into different mathematical models,methods and research results for different orbits in combination with projects we have accomplished over the years.
作者 刘林 侯锡云
出处 《飞行器测控学报》 2009年第2期1-8,共8页 Journal of Spacecraft TT&C Technology
基金 国家自然科学基金(10673006)
关键词 深空探测器 二体问题 圆型限制性三体问题 开普勒轨道 平动点 晕轨道 节能过渡 Deep Space Probe Two-body Problem Circular Restricted Three-body Problem Keplerian Orbit Libration Point Halo Orbit Energy Saving Passage
  • 相关文献

参考文献13

二级参考文献12

共引文献37

同被引文献18

  • 1Farquhar R W, Dunham D W, Guo Y, et al. Utilization of li bration points for human exploration in the Sun-Earth-Moon system and beyond[J]. Acta Astronautica, 2004, 55 (3): 687-700. 被引量:1
  • 2Atessi E M, G6mez G, Masdemont J J. Leaving the Moon by means of invariant manifolds of libration point orbits [J]. Communications in Nonlinear Science and Numerical Simula- tions, 2009, 14(12): 4153-4167. 被引量:1
  • 3Parker J S, Born G H. Direct lunar halo orbit transfers[J]. The Journal of the Astronautical Sciences, 2008, 56 (4): 441-476. P. 被引量:1
  • 4arker J S. Families of low-energy lunar halo transfers[C]// AAS/AIAA Spaceflight Dynamics Conference. Keystone, Colorado, 2006. 被引量:1
  • 5Li M, Zheng J. Indirect transfer to the Earth-Moon L1 libra- tion point[J]. Celestial Mechanics and Dynamical Astrono- my, 2010, 108(2): 203 213. 被引量:1
  • 6Szebehely V. Theory of orbits: the restricted problem of three bodies[M]. New York: Academic Press, 1967: 13-22. 被引量:1
  • 7Rausch R R. Earth to halo orbit transfer trajectories[-D]. West Lafayette: Purdue University, 2005. 被引量:1
  • 8Davis K, Born G, Butcher E. Transfers to Earth-Moon L3 halo orbits[J]. Acta Astronautica, 2013, 88(1): 116-128. 被引量:1
  • 9Holzinger M J. Optimal control applications in space situa- tional awareness [D]. Boulder: University of Colorado, 2011. 被引量:1
  • 10Battin R H. An introduction to the mathematics and methods of astrodynamics[M]. Reston, Virginia, AIAA, 1999. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部